Difference between revisions of "Forest NucPhys I"
Line 82: | Line 82: | ||
==Historical Review== | ==Historical Review== | ||
+ | ===Rutherford Nuclear Atom (1911) === | ||
===Chadwick discovers neutron (1932) === | ===Chadwick discovers neutron (1932) === | ||
Line 90: | Line 91: | ||
The discovery of the neutron as an electrically neutral particle with a mass 0.1% larger than the proton led to the concept that the nucleus of an atom of atomic mass <math>A</math> was composed of <math>Z</math> protons and <math>(A-Z)</math> neutrons. | The discovery of the neutron as an electrically neutral particle with a mass 0.1% larger than the proton led to the concept that the nucleus of an atom of atomic mass <math>A</math> was composed of <math>Z</math> protons and <math>(A-Z)</math> neutrons. | ||
+ | |||
+ | ===Powell discovers pion (1947) === | ||
==Nuclear Properties== | ==Nuclear Properties== |
Revision as of 04:48, 23 January 2008
Advanced Nuclear Physics
References:
Krane:
Catalog Description:
PHYS 609 Advanced Nuclear Physics 3 credits. Nucleon-nucleon interaction, bulk nuclear structure, microscopic models of nuclear structure, collective models of nuclear structure, nuclear decays and reactions, electromagnetic interactions, weak interactions, strong interactions, nucleon structure, nuclear applications, current topics in nuclear physics. PREREQ: PHYS 624 OR PERMISSION OF INSTRUCTOR.
PHYS 624-625 Quantum Mechanics 3 credits. Schrodinger wave equation, stationary state solution; operators and matrices; perturbation theory, non-degenerate and degenerate cases; WKB approximation, non-harmonic oscillator, etc.; collision problems. Born approximation, method of partial waves. PHYS 624 is a PREREQ for 625. PREREQ: PHYS g561-g562, PHYS 621 OR PERMISSION OF INSTRUCTOR.
NucPhys_I_Syllabus
Introduction
The interaction of charged particles (electrons and positrons) by the exchange of photons is described by a fundamental theory known as Quantum ElectroDynamics. QED has perturbative solutions which are limited in accuracy only by the order of the perturbation you have expanded to. As a result the theory is quite useful in describing the interactions of electrons that are prevalent in Atomic physics.
Nuclear physics, however, encompasses the physics of describing not only the nucleus of an Atom but also the composition of the nucleons (protons and neutrons) which are the constituent of the nucleus. Quantum ChromoDynamic (QCD) is the fundamental theory designed to describe the interactions of the quarks and glues inside a nucleon. Unfortunately, QCD does not have a complete solution at this time. At very high energies, QCD can be solved perturbatively. This is an energy at which the strong coupling constant is less than unity where
The "Standard Model" in physics is the grouping of QCD with Quantum ElectroWeak theory. Quantum ElectroWeak theory is the combination of Quantum ElectroDynamics with the weak force; the exchange of photons, W-, and Z-bosons.
The objectives in this class will be to discuss the basic aspects of the nuclear phenomenological models used to describe the nucleus of an atom in the absence of a QCD solution.
Nomenclature
Variable | Definition |
Z | Atomic Number |
A | Atomic Mass |
L | Angular Momentum |
L | Angular Momentum |
L | Angular Momentum |
Nuclide | A specific nuclear species |
Isotope | Nuclides with same Z but different N |
Isotones | Nuclides with same N but different Z |
Isobars | Nuclides with same A |
Nuclide | A specific nuclear species |
Nucelons | Either a neutron or a proton |
J | Nuclear Angular Momentum |
Notation
= An atom identified by the Chemical symbol with protons and neutrons.
Notice that
and are redundant since can be identified by the chemical symbol and can be determined from both and the chemical symbol (N=A-Z).- example
Historical Review
Rutherford Nuclear Atom (1911)
Chadwick discovers neutron (1932)
Prior to 1932, it was believed that a nucleus of Atomic mass
was composed of protons and electrons giving the nucleus a net positive charge . There were a few problems with this description of the nucleus- A very strong force would need to exist which allowed the electrons to overcome the coulomb force such that a bound state could be achieved.
- Electrons spatially confined to the size of the nucleus ( would have a momentum distribution of . Electrons ejected from the nucleus by radioactive decay ( decay) have energies on the order of 1 MeV and not 20.
- Deuteron spin: The total instrinsic angular momentum (spin) of the Deuteron (A=2, Z=1) would be the result of combining two spin 1/2 protons with a spin 1/2 electron. This would predict that the Deuteron was a spin 3/2 or 1/2 nucleus in contradiction with the observed value of 1.
The discovery of the neutron as an electrically neutral particle with a mass 0.1% larger than the proton led to the concept that the nucleus of an atom of atomic mass
was composed of protons and neutrons.