Difference between revisions of "Qal QuantP1S"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Line 49: | Line 49: | ||
a.) <math>H=\begin{pmatrix}w_1&v\\v&w_2\end{pmatrix}</math><br>  | a.) <math>H=\begin{pmatrix}w_1&v\\v&w_2\end{pmatrix}</math><br>  | ||
| − | <math>H=\begin{pmatrix}(w_1-\lambda)&v\\v&w_2\end{pmatrix}</math><br>  | + | <math>H=\begin{pmatrix}(w_1-\lambda)&v\\v&(w_2-\lambda)\end{pmatrix}</math><br>  | 
Revision as of 03:37, 19 August 2007
Solution:
In our case, using separation of variables, we will get 3 differential equations for x, y and z. W(x,y,z)=w(x)w(y)w(z)
(1)
The same will be for y and z.
Solution of equation (1) is following 
- Applying B. C. at x=y=z=0 wave function should be zero, that means B=D=F=0. We have
 
Also, w(a)=0 which gives . For y component   and for z  
A, C and E are normalization constants
, limits are from 0 to a. 
The eigenfunction for each component will be
The eigenenergies 
, ,  
Total energy is sum of these energies.
- , where , n=1,2,3...
 
2.)Solution:
a.)