Difference between revisions of "Theory"

From New IAC Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
      
 
      
  
<math>A_{1, p}^{I} = \frac {4\triangle u_v (x) + \triangle d_v (x)} {4 u_v (x) + d_v (x)} </math>  <math>(1)</math> <br>
+
<math>A_{1, p}^{I} = \frac {4\triangle u_v (x) + \triangle d_v (x)} {4 u_v (x) + d_v (x)} </math>  (1) <br>
<math>A_{1, n}^{I} = \frac {\triangle u_v (x) + 4\triangle d_v (x)} {u_v (x) + 4d_v (x)} </math>    <br>
+
<math>A_{1, n}^{I} = \frac {\triangle u_v (x) + 4\triangle d_v (x)} {u_v (x) + 4d_v (x)} </math>    (2)<br>
  
  
 
The semi-inclusive pion electro-production asymmetries can be written in terms of the valence quark distributions <br>
 
The semi-inclusive pion electro-production asymmetries can be written in terms of the valence quark distributions <br>
<math>A_{1, p}</math><sup><math>\pi^+ - \pi^-</math></sup> =  <math>\frac {4\triangle u_v (x) - \triangle d_v (x)} {4 u_v (x) - d_v (x)} </math> <br>
+
<math>A_{1, p}</math><sup><math>\pi^+ - \pi^-</math></sup> =  <math>\frac {4\triangle u_v (x) - \triangle d_v (x)} {4 u_v (x) - d_v (x)} </math>                                 (3)<br>
  
  
<math>A_{1,2H}</math><sup><math>\pi^+ - \pi^-</math></sup> =  <math>\frac {\triangle u_v (x) + \triangle d_v (x)} { u_v (x) + d_v (x)} </math> <br>
+
<math>A_{1,2H}</math><sup><math>\pi^+ - \pi^-</math></sup> =  <math>\frac {\triangle u_v (x) + \triangle d_v (x)} { u_v (x) + d_v (x)} </math>                                   (4)<br>
  
  
 
where<br>
 
where<br>
  
<math>A</math><sup><math>\pi^+ - \pi^-</math></sup> =<math>\frac {\sigma^{\pi^+ - \pi^-}_{\uparrow \downarrow} - \sigma^{\pi^+ - \pi^-}_{\uparrow \uparrow}} {\sigma^{\pi^+ - \pi^-}_{\uparrow \downarrow} + \sigma^{\pi^+ - \pi^-}_{\uparrow \uparrow}} </math><br>
 
where <math>\sigma^{\pi^+ - \pi^-}</math> is the measured difference of the yield from oppositely charged pions.<br>
 
The semi - inclusive asymmetry can be expressed in the following way<br>
 
  
<math>A_{1,2H}^{\pi^+ - \pi^-} = \frac {A^{\pi^+}} {1 + \frac {1} {R_p^{{\pi^+}/{\pi^-}}} } </math> - <math>\frac {A^{\pi^-}} {1 + R_p^{{\pi^+}/{\pi^-}} } </math><br>
+
<math>A</math><sup><math>\pi^+ - \pi^-</math></sup> =<math>\frac {\sigma^{\pi^+ - \pi^-}_{\uparrow \downarrow} - \sigma^{\pi^+ - \pi^-}_{\uparrow \uparrow}} {\sigma^{\pi^+ - \pi^-}_{\uparrow \downarrow} + \sigma^{\pi^+ - \pi^-}_{\uparrow \uparrow}} </math>                            (5)<br>
 +
 
 +
 
 +
where <math>\sigma^{\pi^+ - \pi^-}</math> is the measured difference of the yield from oppositely charged pions. Using the first four equation (1), (2), (3) and (4)one can construct the valence quark distribution functions<br>
 +
The semi - inclusive asymmetry can be rewritten in terms of the measured semi-inclusive <math>\pi^+</math> and <math>\pi^-</math> asymmetries:<br>
 +
 
 +
 
 +
<math>A_{1,2H}^{\pi^+ - \pi^-} = \frac {A^{\pi^+}} {1 + \frac {1} {R_p^{{\pi^+}/{\pi^-}}} } </math> - <math>\frac {A^{\pi^-}} {1 + R_p^{{\pi^+}/{\pi^-}} } </math>                 (6)<br>
 +
 
 +
 
  
 
where <math>R_{2H}^{\pi^+/\pi^-} = \frac{\sigma^{\pi^+}} {\sigma^{\pi^-}}</math> and <br>
 
where <math>R_{2H}^{\pi^+/\pi^-} = \frac{\sigma^{\pi^+}} {\sigma^{\pi^-}}</math> and <br>
  
<math>A^{\pi^+ (\pi^-)} = \frac {\sigma^{\pi^+ (\pi^-)}_{\uparrow \downarrow} - \sigma^{\pi^+(\pi^-)}_{\uparrow \uparrow}} {\sigma^{\pi^+ (\pi^-)}_{\uparrow \downarrow} + \sigma^{\pi^+(\pi^-)}_{\uparrow \uparrow}} </math><br>
+
 
 +
 
 +
<math>A^{\pi^+ (\pi^-)} = \frac {\sigma^{\pi^+ (\pi^-)}_{\uparrow \downarrow} - \sigma^{\pi^+(\pi^-)}_{\uparrow \uparrow}} {\sigma^{\pi^+ (\pi^-)}_{\uparrow \downarrow} + \sigma^{\pi^+(\pi^-)}_{\uparrow \uparrow}} </math> (7) <br>
 +
 
  
  

Revision as of 20:47, 18 July 2007

Inclusive Scattering

W

Semi-Inclusive Scattering

Quark distribution Functions

describe [math] q_v (x)[/math] and [math]\Delta q_v (x)[/math] here

Unpolarized

Polarized

Both models, pQCD and a hyperfine perturbed constituent quark model(CQD), show that as the scaling variable [math]x_{Bj}[/math] goes to one the double spin asymmetry [math]A_{1,N}[/math] is unity. On the other hand, CQM with SU(6) symmetry predicts that at [math]x_{Bj}[/math] = 1 [math]A_{1,n}[/math] = 5/9 for the proton, [math]A_{1,n}[/math] = 0 for the neutron and [math]A_{1,d}[/math] = 1/3 for the deuteron. The double spin asymmetry and the ratio of the polarized valence down quark distribution function to the unpolarized [math]({\triangle d_v} / {d_v}) [/math] can give knowledge of these two different results.


The inclusive double polarization asymmetries [math]A_N[/math] in the valence region, where the scaling variable [math]x_{Bj} \gt 0.3[/math]can be written in terms of polarized [math]\triangle q_v (x)[/math] and unpolarized [math] q_v (x)[/math] valence quark distributions,


[math]A_{1, p}^{I} = \frac {4\triangle u_v (x) + \triangle d_v (x)} {4 u_v (x) + d_v (x)} [/math] (1)
[math]A_{1, n}^{I} = \frac {\triangle u_v (x) + 4\triangle d_v (x)} {u_v (x) + 4d_v (x)} [/math] (2)


The semi-inclusive pion electro-production asymmetries can be written in terms of the valence quark distributions
[math]A_{1, p}[/math][math]\pi^+ - \pi^-[/math] = [math]\frac {4\triangle u_v (x) - \triangle d_v (x)} {4 u_v (x) - d_v (x)} [/math] (3)


[math]A_{1,2H}[/math][math]\pi^+ - \pi^-[/math] = [math]\frac {\triangle u_v (x) + \triangle d_v (x)} { u_v (x) + d_v (x)} [/math] (4)


where


[math]A[/math][math]\pi^+ - \pi^-[/math] =[math]\frac {\sigma^{\pi^+ - \pi^-}_{\uparrow \downarrow} - \sigma^{\pi^+ - \pi^-}_{\uparrow \uparrow}} {\sigma^{\pi^+ - \pi^-}_{\uparrow \downarrow} + \sigma^{\pi^+ - \pi^-}_{\uparrow \uparrow}} [/math] (5)


where [math]\sigma^{\pi^+ - \pi^-}[/math] is the measured difference of the yield from oppositely charged pions. Using the first four equation (1), (2), (3) and (4)one can construct the valence quark distribution functions
The semi - inclusive asymmetry can be rewritten in terms of the measured semi-inclusive [math]\pi^+[/math] and [math]\pi^-[/math] asymmetries:


[math]A_{1,2H}^{\pi^+ - \pi^-} = \frac {A^{\pi^+}} {1 + \frac {1} {R_p^{{\pi^+}/{\pi^-}}} } [/math] - [math]\frac {A^{\pi^-}} {1 + R_p^{{\pi^+}/{\pi^-}} } [/math] (6)


where [math]R_{2H}^{\pi^+/\pi^-} = \frac{\sigma^{\pi^+}} {\sigma^{\pi^-}}[/math] and


[math]A^{\pi^+ (\pi^-)} = \frac {\sigma^{\pi^+ (\pi^-)}_{\uparrow \downarrow} - \sigma^{\pi^+(\pi^-)}_{\uparrow \uparrow}} {\sigma^{\pi^+ (\pi^-)}_{\uparrow \downarrow} + \sigma^{\pi^+(\pi^-)}_{\uparrow \uparrow}} [/math] (7)


An asymmetry [math]\triangle R_{np} ^{\pi^+ + \pi^-} = \frac {\triangle\sigma_p^{\pi^+ + \pi^-} - \triangle\sigma_n^{\pi^+ + \pi^-}} {\sigma_p^{\pi^+ + \pi^-} - \sigma_n^{\pi^+ + \pi^-}} = \frac {g_1^p - g_1^n} {F_1^p - F_1^n} (x, Q^2)[/math]


The last equation can be expressed as
[math]\triangle R_{np} ^{\pi^+ + \pi^-} = R_{n/p}[\frac {A_p^{\pi^+}} {1 + \frac {1} {R_p^{{\pi^+}/{\pi^-}}} } + \frac {A_p^{\pi^-}} {1 + R_p^{{\pi^+}/{\pi^-}} } ] + R_{p/n}[\frac {A_n^{\pi^+}} {1 + \frac {1} {R_n^{{\pi^+}/{\pi^-}}} } + \frac {A_n^{\pi^-}} {1 + R_n^{{\pi^+}/{\pi^-}} } ][/math]


[math]R_{i/j} = \frac {\frac {1 + (1-y)^2} {2y(2 - y)} } {1 - \frac {R_{i/j}^{\pi^+}} {1 + \frac{1}{R_j^{\pi^+/\pi^-} }} - \frac {R_{i/j}^{\pi^+}} {1 + R_j^{\pi^+/\pi^-} }} [/math]

[math]R_{i/j}^{\pi^c} = \frac {\sigma_i ^{\pi^c}} {\sigma_j ^{\pi^c}} [/math]