Difference between revisions of "Theory"

From New IAC Wiki
Jump to navigation Jump to search
Line 16: Line 16:
  
  
<math>A_{1,2H}</math><sup><math>(\pi +) - (\pi -)</math></sup> =  <math>\frac {\triangle u_v (x) + \triangle d_v (x)} { u_v (x) + d_v (x)} </math> <br>
+
<math>A_{1,2H}</math><sup><math>\pi^+ - \pi^-</math></sup> =  <math>\frac {\triangle u_v (x) + \triangle d_v (x)} { u_v (x) + d_v (x)} </math> <br>
  
  

Revision as of 17:47, 18 July 2007

Inclusive Scattering

W

Semi-Inclusive Scattering

Quark distribution Functions

Unpolarized

Polarized

The inclusive double polarization asymmetries [math]A_N[/math] can be written in terms of polarized [math]\triangle q_v (x)[/math] and unpolarized [math] q_v (x)[/math] valence quark distributions,


[math]A_{1, p}[/math]I = [math]\frac {4\triangle u_v (x) + \triangle d_v (x)} {4 u_v (x) + d_v (x)} [/math]
[math]A_{1, n}[/math]I = [math]\frac {\triangle u_v (x) + 4\triangle d_v (x)} {u_v (x) + 4d_v (x)} [/math]


The semi-inclusive pion electro-production asymmetries can be written in terms of the valence quark distributions in the following way
[math]A_{1, p}[/math][math](\pi +) - (\pi -)[/math] = [math]\frac {4\triangle u_v (x) - \triangle d_v (x)} {4 u_v (x) - d_v (x)} [/math]


[math]A_{1,2H}[/math][math]\pi^+ - \pi^-[/math] = [math]\frac {\triangle u_v (x) + \triangle d_v (x)} { u_v (x) + d_v (x)} [/math]


where

[math]A[/math][math]\pi^+ - \pi^-[/math] =