Difference between revisions of "Relativistic Differential Cross-section"

From New IAC Wiki
Jump to navigation Jump to search
Line 15: Line 15:
  
  
<center><math>F_{cms}=4 \vec p_1^*\sqrt {s}</math></center>
+
<center><math>F_{cms}=4 \vec p_{1}^{*}\sqrt {s}</math></center>
  
  
  
<center><math>d\sigma=\frac{1}{4 \vec p_1\,^*\sqrt {s}}|\mathcal{M}|^2 dQ</math></center>
+
<center><math>d\sigma=\frac{1}{4 \vec p_{1}\,^{*}\sqrt {s}}|\mathcal{M}|^2 dQ</math></center>
  
  
  
<center><math>d^3 \vec p_1^'=\vec p^{'3}_1 d \vec p^'  d\Omega</math></center>
+
<center><math>d^3 \vec p_{1}^{'}=\vec p^{'3}_{1} d \vec p^{'} d\Omega</math></center>
  
 
   
 
   
<center><math>(E_1^')^2=(\vec p_1^')^2+(m_1)^2</math></center>
+
<center><math>(E_1^')^2=(\vec p_{1}^{'})^2+(m_{1})^{2}</math></center>
  
  
<center><math>E_1^' d E_1^'= \vec p_1^' d \vec p_1^'</math></center>
+
<center><math>E_{1}^{'} d E_{1}^{'}= \vec p_{1}^{'} d \vec p_{1}^{'}</math></center>
  
  
  
<center><math>dQ=\frac{1}{(4\pi)^2}\delta (E_1+E_2-E_1^'-E_2^')\frac{\vec p_1^'dE_1^'}{E_2^'}d\Omega</math><\center>
+
<center><math>dQ=\frac{1}{(4\pi)^2}\delta (E_{1}+E_{2}-E_{1}^{'}-E_{2}^{'})\frac{\vec p_{1}^{'}dE_{1}^{'}}{E_{2}^{'}}d\Omega</math><\center>
  
  

Revision as of 20:45, 29 December 2018

Relativistic Differential Cross-section

dσ=1F|M|2dQ

dQ is the invariant Lorentz phase space factor


dQ=(2π)4δ4(p1+p2p1p2)d3p1(2π)32E1d3p2(2π)32E2


and F is the flux of incoming particles



Fcms=4p1s


dσ=14p1s|M|2dQ


d3p1=p31dpdΩ


(E_1^')^2=(\vec p_{1}^{'})^2+(m_{1})^{2}


E1dE1=p1dp1


dQ=1(4π)2δ(E1+E2E1E2)p1dE1E2dΩ<\center>


W_i \equiv E_1+E_2  \qquad \qquad W_f \equiv E_1^'+E_2^'


dW_f=dE_1^'+dE_2^'=\frac{\vec p_1^' d \vec p_1^'}{E_1^'}+\frac{p_2^' dp_2^'}{E_2^'}


In the center of mass frame

|\vec p_1^'|=|\vec p_2^'|=|\vec p_f^'| \rightarrow |\vec p_1^' d \vec p_1^'|=|\vec p_2^' d \vec p_2^'|=|\vec p_f^' d \vec p_f^'|


dW_f=\frac{W_f}{E_2^'}dE_1^'


dQcms=1(4π)2δ(WiWf)pfdWfWfdΩ


dQcms=1(4π)2pfsdΩ


dσdΩ=164π2spfpi|M|2