Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
<\center>
Line 15: | Line 15: | ||
− | <center><math>F_{cms}=4 \vec | + | <center><math>F_{cms}=4 \vec p_{1}^{*}\sqrt {s}</math></center> |
− | <center><math>d\sigma=\frac{1}{4 \vec | + | <center><math>d\sigma=\frac{1}{4 \vec p_{1}\,^{*}\sqrt {s}}|\mathcal{M}|^2 dQ</math></center> |
− | <center><math>d^3 \vec | + | <center><math>d^3 \vec p_{1}^{'}=\vec p^{'3}_{1} d \vec p^{'} d\Omega</math></center> |
− | <center><math>(E_1^')^2=(\vec | + | <center><math>(E_1^')^2=(\vec p_{1}^{'})^2+(m_{1})^{2}</math></center> |
− | <center><math> | + | <center><math>E_{1}^{'} d E_{1}^{'}= \vec p_{1}^{'} d \vec p_{1}^{'}</math></center> |
− | <center><math>dQ=\frac{1}{(4\pi)^2}\delta ( | + | <center><math>dQ=\frac{1}{(4\pi)^2}\delta (E_{1}+E_{2}-E_{1}^{'}-E_{2}^{'})\frac{\vec p_{1}^{'}dE_{1}^{'}}{E_{2}^{'}}d\Omega</math><\center> |
Revision as of 20:45, 29 December 2018
Relativistic Differential Cross-section
dQ is the invariant Lorentz phase space factor
and F is the flux of incoming particles
In the center of mass frame