Difference between revisions of "TF InclusiveDeltaDoverD"
Jump to navigation
Jump to search
Line 11: | Line 11: | ||
− | using the above definition to define the proton and neutron unpolarized structure function: | + | using the above definition to define the proton and neutron unpolarized structure function : |
<math> F_1^p(x) \equiv \frac{1}{2} \sum_q e_i^2 q_i^p(x) = \frac{1}{2}\left [ \left( \frac{2}{3} \right)^2 u^p(x)+ \left( \frac{-1}{3} \right)^2 d^p(x)\right ] =\frac{1}{2} \left [\frac{4}{9}u^p(x) + \frac{1}{9}d^p(x)\right ]</math> | <math> F_1^p(x) \equiv \frac{1}{2} \sum_q e_i^2 q_i^p(x) = \frac{1}{2}\left [ \left( \frac{2}{3} \right)^2 u^p(x)+ \left( \frac{-1}{3} \right)^2 d^p(x)\right ] =\frac{1}{2} \left [\frac{4}{9}u^p(x) + \frac{1}{9}d^p(x)\right ]</math> | ||
Line 17: | Line 17: | ||
<math> F_1^n(x) \equiv \frac{1}{2} \sum_q e_i^2 q_i^p(x) = \frac{1}{2}\left [ \left( \frac{2}{3} \right)^2 u^n(x)+ \left( \frac{-1}{3} \right)^2 d^n(x)\right ] =\frac{1}{2} \left [\frac{4}{9}u^n(x) + \frac{1}{9}d^n(x)\right ]</math> | <math> F_1^n(x) \equiv \frac{1}{2} \sum_q e_i^2 q_i^p(x) = \frac{1}{2}\left [ \left( \frac{2}{3} \right)^2 u^n(x)+ \left( \frac{-1}{3} \right)^2 d^n(x)\right ] =\frac{1}{2} \left [\frac{4}{9}u^n(x) + \frac{1}{9}d^n(x)\right ]</math> | ||
+ | |||
+ | ;The above is true within the framework of the constituent quark model when in the valence quark region <math>\left ( x_bj>0.5 \right )</math> where the more massive quarks are ignored as well as anti-quarks | ||
Using Isospin symmetry | Using Isospin symmetry | ||
Line 26: | Line 28: | ||
<math> F_1^p(x) =\frac{1}{2} \left [\frac{4}{9}u(x) + \frac{1}{9}d(x)\right ] \;\;\;\;\;</math> <math> F_1^n(x)=\frac{1}{2} \left [\frac{4}{9}d(x) + \frac{1}{9}u(x)\right ]</math> | <math> F_1^p(x) =\frac{1}{2} \left [\frac{4}{9}u(x) + \frac{1}{9}d(x)\right ] \;\;\;\;\;</math> <math> F_1^n(x)=\frac{1}{2} \left [\frac{4}{9}d(x) + \frac{1}{9}u(x)\right ]</math> | ||
+ | similarly for the polarized structure function | ||
+ | <math> g_1(x) \equiv \frac{1}{2} \sum_q e_i^2 \Delta q_i(x) </math> | ||
− | |||
− | |||
<math>g_1^d \approx \left ( 1 - 1.5 \omega_D \right ) \left ( g_1^n + g_1^p \right )</math><ref> Eq. 28 from https://arxiv.org/abs/1505.07877 which is based on https://arxiv.org/abs/0809.4308</ref> | <math>g_1^d \approx \left ( 1 - 1.5 \omega_D \right ) \left ( g_1^n + g_1^p \right )</math><ref> Eq. 28 from https://arxiv.org/abs/1505.07877 which is based on https://arxiv.org/abs/0809.4308</ref> |
Revision as of 16:16, 22 September 2018
using the above definition to define the proton and neutron unpolarized structure function :
- The above is true within the framework of the constituent quark model when in the valence quark region where the more massive quarks are ignored as well as anti-quarks
Using Isospin symmetry
and
The unpolarized structure functions for the proton and neutron may be written as
similarly for the polarized structure function
https://arxiv.org/abs/1505.07877 which is based on https://arxiv.org/abs/0809.4308</ref>
<ref> Eq. 28 from
<references />