Difference between revisions of "Weighted Occupancy"

From New IAC Wiki
Jump to navigation Jump to search
Line 12: Line 12:
  
  
 
+
=Method 1=
<center>CLAS12 Occupancy=<math>\frac{N_{hits}}{N_{evt}}\frac{t_{sim}}{\Delta t}\frac{1}{112}\frac{100}{12}</math></center>
+
<center>CLAS12 Occupancy<math>\equiv\frac{N_{hits}}{N_{evt}}\frac{t_{sim}}{\Delta t}\frac{1}{112}\frac{100}{12}</math></center>
  
  
Line 43: Line 43:
  
 
<center>Occupancy(100nA)=<math>\frac{3698.7}{270}\frac{1.56E-7}{250E-9}\frac{1}{112}\frac{100}{12}=0.637\%</math></center>
 
<center>Occupancy(100nA)=<math>\frac{3698.7}{270}\frac{1.56E-7}{250E-9}\frac{1}{112}\frac{100}{12}=0.637\%</math></center>
 +
 +
=Method 2=
 +
<center>CLAS12 Occupancy<math>\equiv\frac{N_{hits}}{N_{evt}}\frac{\Delta t}{t_{sim}}\frac{1}{112}\frac{100}{12}</math></center>
 +
 +
 +
Using the unweighted amounts
 +
 +
 +
<center>Occupancy(50nA)=<math>\frac{1274783}{92967}\frac{250E-9}{3.11E-7}\frac{1}{112}\frac{100}{12}=0.82\%</math></center>
 +
 +
 +
 +
<center>Occupancy(75nA)=<math>\frac{1274783}{92967}\frac{250E-9}{2.07E-7}\frac{1}{112}\frac{100}{12}=1.23\%</math></center>
 +
 +
 +
 +
<center>Occupancy(100nA)=<math>\frac{1274783}{92967}\frac{250E-9}{1.56E-7}\frac{1}{112}\frac{100}{12}=1.63\%</math></center>
 +
 +
 +
 +
Using the weighted amounts
 +
 +
 +
<center>Occupancy(50nA)=<math>\frac{3698.7}{270}\frac{3.11E-7}{250E-9}\frac{1}{112}\frac{100}{12}=0.82\%</math></center>
 +
 +
 +
 +
<center>Occupancy(75nA)=<math>\frac{3698.7}{270}\frac{2.07E-7}{250E-9}\frac{1}{112}\frac{100}{12}=1.23\%</math></center>
 +
 +
 +
 +
<center>Occupancy(100nA)=<math>\frac{3698.7}{270}\frac{1.56E-7}{250E-9}\frac{1}{112}\frac{100}{12}=1.63\%</math></center>

Revision as of 04:04, 25 July 2018

Total XSect=0.013866

Nin97234stats.png


[math]t_{sim}(50nA)=\frac{N_{in}}{\frac{50E-9\ A}{}\frac{1\ C}{1\ A}\frac{}{1\ s}\frac{1\ e^{-}}{1.602E-19\ C}}=\frac{97234\ e^{-}}{312,109,862,672\ e^{-}/s}=3.11E-7\ s[/math]


[math]t_{sim}(75nA)=\frac{N_{in}}{\frac{50E-9\ A}{}\frac{1\ C}{1\ A}\frac{}{1\ s}\frac{1\ e^{-}}{1.602E-19\ C}}=\frac{97234\ e^{-}}{468,164,794,007\ e^{-}/s}=2.07E-7\ s[/math]


[math]t_{sim}(100nA)=\frac{N_{in}}{\frac{50E-9\ A}{}\frac{1\ C}{1\ A}\frac{}{1\ s}\frac{1\ e^{-}}{1.602E-19\ C}}=\frac{97234\ e^{-}}{624,219,725,343\ e^{-}/s}=1.56E-7\ s[/math]


Method 1

CLAS12 Occupancy[math]\equiv\frac{N_{hits}}{N_{evt}}\frac{t_{sim}}{\Delta t}\frac{1}{112}\frac{100}{12}[/math]


Using the unweighted amounts


Occupancy(50nA)=[math]\frac{1274783}{92967}\frac{3.11E-7}{250E-9}\frac{1}{112}\frac{100}{12}=1.27\%[/math]


Occupancy(75nA)=[math]\frac{1274783}{92967}\frac{2.07E-7}{250E-9}\frac{1}{112}\frac{100}{12}=0.844\%[/math]


Occupancy(100nA)=[math]\frac{1274783}{92967}\frac{1.56E-7}{250E-9}\frac{1}{112}\frac{100}{12}=0.637\%[/math]


Using the weighted amounts


Occupancy(50nA)=[math]\frac{3698.7}{270}\frac{3.11E-7}{250E-9}\frac{1}{112}\frac{100}{12}=1.27\%[/math]


Occupancy(75nA)=[math]\frac{3698.7}{270}\frac{2.07E-7}{250E-9}\frac{1}{112}\frac{100}{12}=0.844\%[/math]


Occupancy(100nA)=[math]\frac{3698.7}{270}\frac{1.56E-7}{250E-9}\frac{1}{112}\frac{100}{12}=0.637\%[/math]

Method 2

CLAS12 Occupancy[math]\equiv\frac{N_{hits}}{N_{evt}}\frac{\Delta t}{t_{sim}}\frac{1}{112}\frac{100}{12}[/math]


Using the unweighted amounts


Occupancy(50nA)=[math]\frac{1274783}{92967}\frac{250E-9}{3.11E-7}\frac{1}{112}\frac{100}{12}=0.82\%[/math]


Occupancy(75nA)=[math]\frac{1274783}{92967}\frac{250E-9}{2.07E-7}\frac{1}{112}\frac{100}{12}=1.23\%[/math]


Occupancy(100nA)=[math]\frac{1274783}{92967}\frac{250E-9}{1.56E-7}\frac{1}{112}\frac{100}{12}=1.63\%[/math]


Using the weighted amounts


Occupancy(50nA)=[math]\frac{3698.7}{270}\frac{3.11E-7}{250E-9}\frac{1}{112}\frac{100}{12}=0.82\%[/math]


Occupancy(75nA)=[math]\frac{3698.7}{270}\frac{2.07E-7}{250E-9}\frac{1}{112}\frac{100}{12}=1.23\%[/math]


Occupancy(100nA)=[math]\frac{3698.7}{270}\frac{1.56E-7}{250E-9}\frac{1}{112}\frac{100}{12}=1.63\%[/math]