Difference between revisions of "Linac Run Plan April 2018, Dr. McNulty"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
=Date=
 
 
85 useable OSLs
 
 
Machine: 24b Linac
 
 
Beam Energy: 8 MeV
 
 
Rep Rate: Max (180Hz)?
 
 
:{| border="2" style="text-align:center;" |cellpadding="20" cellspacing="0
 
|-
 
| Shot # ||Start Time  || End Time || Number of OSLs || Distance to end of beampipe || Beam Current || Aluminum Brick || Background Subtracted PMT Counts
 
|-
 
| 1 ||7am || 7:15am || 1 || 25cm || amps || Out ||
 
|-
 
| 2 ||7:20am || 7:35am || 1 || 25cm || amps || Out ||
 
|-
 
| 3 || 7:40am || 7:55am || 1 || 25cm || amps || Out ||
 
|-
 
| 4 || 8:00 || 8:20 || 1 || 25cm || amps || Out ||
 
|-
 
| 5 || ||  || 1 || 25cm || amps || Out ||
 
|-
 
| 6 || ||  || 1 || 25cm || amps || In ||
 
|-
 
| 7 || ||  || 1 || 25cm || amps || In ||
 
|-
 
| 8 || ||  || 1 || 25cm || amps || In ||
 
|-
 
| 9 || ||  || 1 || 25cm || amps || In ||
 
|-
 
| 10 || ||  || 1 || 25cm || amps || In ||
 
|-
 
| 11 ||  ||  || 10 || 25cm || amps || Out ||
 
|-
 
| 12 ||  ||  || 10 || 25cm || amps || Out ||
 
|-
 
| 13 ||  ||  || 10 || 25cm || amps || Out ||
 
|-
 
| 14 ||  ||  || 10 || 25cm || amps || Out ||
 
|-
 
| 15 ||  ||  || 10 || 25cm || amps || Out ||
 
|-
 
| 16 ||  ||  || 10 || 25cm || amps || In ||
 
|-
 
| 17 ||  ||  || 15 || 25cm || amps || In ||
 
|-
 
|}
 
 
 
==Calculations==
 
==Calculations==
  

Revision as of 19:21, 16 April 2018

Calculations

Assuming [math]100\frac{mA}{pulse}[/math] and a pulse width of [math]100ns[/math]

Then [math]100\frac{mA}{pulse}=100\frac{mC}{s*pulse}=0.1\frac{C}{s*pulse}[/math]

[math]0.1\frac{C}{s*pulse}(100ns)=10*10^{-9}\frac{C}{pulse}[/math]

[math]10*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=6.2422*10^{10}\frac{e-}{pulse}[/math]


Absorbed Dose Information

OSL

[math]\frac{1}{1000}[/math] of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]4.46596*10^{6} MeV[/math]

OSL Crystal density[math]=3.9698\frac{g}{cm^{3}}[/math]

Mass of a single OSL crystal: [math](\pi(0.501)^{2}*(0.03))*(3.9698)=0.0234777g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]4.46596*10^{10} MeV[/math]

Converting to Joules for dose calculation: [math]4.46596*10^{10} MeV=7.15525*10^{-5}J[/math]

Average dose per pulse [math]\frac{7.15525*10^{-5}J}{0.0234777*10^{-3}\ Kg}=3.04768\ Gy=304.768\ rad[/math]

Quartz

[math]\frac{1}{1000}[/math] of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]4.71875*10^{8} MeV[/math]

Quartz Geometry: 1 inch cylinder with electrons incident upon the base of the cylinder.

Quartz density[math]=2.32\frac{g}{cm^{3}}[/math]

Mass of Quartz used in simulation: [math](\pi(1.27)^{2}*(2.54))*(2.32)=29.8593g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]4.71875*10^{12} MeV[/math]

Converting to Joules for dose calculation: [math]4.71875*10^{12} MeV=0.756027J[/math]

Average dose per pulse [math]\frac{0.756027\ J}{29.8593*10^{-3}\ Kg}=25.3196\ Gy=2531.96\ rad[/math]



Thesis