Difference between revisions of "Converting to barns"

From New IAC Wiki
Jump to navigation Jump to search
Line 82: Line 82:
  
  
Where <center><math>E^2=p^2+m^2=(11000\ MeV)^2+(0.511\ MeV)^2 \rightarrow E=11000.0000119\ MeV</math></center>
+
Where <center><math>E^2=p^2+m^2=(53\ MeV)^2+(0.511\ MeV)^2 \rightarrow E=53.0025\ MeV</math></center>
  
<math>\gamma=\frac{E}{m}=\frac{11000.0000119\ MeV}{0.511\ MeV}=21526.41</math>
+
<math>\gamma=\frac{E}{m}=\frac{53.0025\ MeV}{0.511\ MeV}=103.72</math>
  
  
<math>z'=\frac{1}{\gamma}z=\frac{1}{21526.4188099}5\ cm=2.32e-4\ cm</math>
+
<math>z'=\frac{1}{\gamma}z=\frac{1}{103.72}5\ cm=0.048\ cm</math>
  
  
  
<center><math>\rho_{target}\times l_{target}=\frac{70.85 kg}{1 m^3}\times \frac{1 mole}{2.02 g} \times \frac{1000g}{1 kg} \times \frac{6\times10^{23} atoms}{1 mole} \times \frac{1m^3}{(100 cm)^3} \times \frac{5 cm}{ } \times \frac{10^{-24} cm^{2}}{barn} =1.05\times 10^{-1} barns^{-1}</math></center>
+
<center><math>\rho_{target}\times l_{target}=\frac{70.85 kg}{1 m^3}\times \frac{1 mole}{2.02 g} \times \frac{1000g}{1 kg} \times \frac{6\times10^{23} atoms}{1 mole} \times \frac{1m^3}{(100 cm)^3} \times \frac{0.05 cm}{ } \times \frac{10^{-24} cm^{2}}{barn} =1.05\times 10^{-3} barns^{-1}</math></center>
  
  
 
Using the number of incident electrons, for 1 Moller electron:
 
Using the number of incident electrons, for 1 Moller electron:
  
<center><math>\frac{1}{\rho_{target}\times l_{target} \times 6\times 10^7}=1.58\times 10^{-7} barns</math></center>
+
<center><math>\frac{1}{\rho_{target}\times l_{target} \times 6\times 10^7}=1.58\times 10^{-5} barns</math></center>
  
 
We can use this number to scale the number of electrons per angle to a differential cross-section in barns.  Using the plot of the Moller electron scattering angle theta in the Center of Mass frame,
 
We can use this number to scale the number of electrons per angle to a differential cross-section in barns.  Using the plot of the Moller electron scattering angle theta in the Center of Mass frame,

Revision as of 19:53, 4 April 2018

Using the equation from [1]

dσdΩ=e48E2{1+cos4θ2sin4θ2+1+sin4θ2cos4θ2+2sin2θ2cos2θ2}


where α=e2cwith=c=1


This can be simplified to the form


dσdΩ=α24E2(3+cos2θ)2sin4θ

Plugging in the values expected for a scattering electron in the CM frame:



α2=5.3279×105


E53MeV


Using unit analysis on the term outside the parantheses, we find that the differential cross section for an electron at this momentum should be around

5.3279×1054×(53×106 eV)2=5.3279×1054×2.81×1015eV2=4.74×1021eV2=4.74×10211eV2×1×1018eV21 GeV2=.0047GeV2

Using the conversion of


11GeV2=.3894mb


1 GeV2.3894 mb=.0047 GeV2x mb


x=.0047 GeV2.3894 mb1 GeV2=1.8×106b


The trigonometric function part of the equation comes out to it's minimum of 9 at 90 degrees.


(3+Cos2(90))2Sin4(90)=9


We find that the differential cross section scale is dσdΩ1.8×103mb×9=16.2μb

Plotting the Moller Differential Cross-Section we find:


Theoretical Moller Differential Cross-Section in Center of Mass Frame Frame
Figure 5a: The theoretical Moller electron differential cross-section for an incident 11 GeV(Lab) electron in the Center of Mass frame of reference.

Converting the number of electrons scattered per angle theta to barns, we can use the relation

L=NscatteredtσIbeam×ρtarget×ltarget


NscatteredσNincident×ρtarget×ltarget


where ρtarget is the density of the target material, ltarget is the length of the target, and Iscattered is the number of incident particles scattered per time.

This gives, for LH2 in a 5cm long target in the Lab Frame, or in the CM frame:


z=γ(zvt)



z=5cm


and β2v2c2=p2c2m2c2c2=p2c2E2=p2E2

with c=1

and γ11β2=EE21p2E2=Em


Where

E2=p2+m2=(53 MeV)2+(0.511 MeV)2E=53.0025 MeV

γ=Em=53.0025 MeV0.511 MeV=103.72


z=1γz=1103.725 cm=0.048 cm


ρtarget×ltarget=70.85kg1m3×1mole2.02g×1000g1kg×6×1023atoms1mole×1m3(100cm)3×0.05cm×1024cm2barn=1.05×103barns1


Using the number of incident electrons, for 1 Moller electron:

1ρtarget×ltarget×6×107=1.58×105barns

We can use this number to scale the number of electrons per angle to a differential cross-section in barns. Using the plot of the Moller electron scattering angle theta in the Center of Mass frame,

Moller Electron Angle Theta in Center of Mass Frame
Figure 5b: The Moller electron scattering angle theta distribution for an incident 11 GeV(Lab) electron in the Center of Mass frame of reference.


We can rescale and combine the theoretical differential cross-section for one electron.

TH1F *Combo=new TH1F("TheoryExperiment","Theoretical and Experimental Differential Cross-Section CM Frame",360,90,180);
Combo->Add(MollerThetaCM,7.92e-7);
Combo->Draw();
Theory->Draw("same");

Links

Back