Difference between revisions of "Phase space Limiting Particles"

From New IAC Wiki
Jump to navigation Jump to search
 
Line 22: Line 22:
  
 
Since the momentum in the CM frame is a constant, this implies that pz must decrease.  We can use the variable rapidity:
 
Since the momentum in the CM frame is a constant, this implies that pz must decrease.  We can use the variable rapidity:
 
 
<center><math>y \equiv \arctan{\frac{\vec p}{E}}</math></center>
 
 
 
 
<center><math>y \equiv \frac {1}{2} \ln \left(\frac{E+\vec p}{E-\vec p}\right)</math></center>
 
  
  
Line 34: Line 27:
 
<center><math>y \equiv \frac {1}{2} \ln \left(\frac{E+p_z}{E-p_z}\right)</math></center>
 
<center><math>y \equiv \frac {1}{2} \ln \left(\frac{E+p_z}{E-p_z}\right)</math></center>
  
where
 
 
<center><math> P^+ \equiv E+p_z</math></center>
 
 
<center><math> P^- \equiv E-p_z</math></center>
 
  
 
this implies that as  
 
this implies that as  
Line 60: Line 48:
 
<center><math>p_x^2+p_y^2=52.589054^2+9.272868^2=53.400MeV > 53.015 MeV (E) \therefore p_z \rightarrow imaginary</math></center>
 
<center><math>p_x^2+p_y^2=52.589054^2+9.272868^2=53.400MeV > 53.015 MeV (E) \therefore p_z \rightarrow imaginary</math></center>
  
These particles are outside the light cone and are more timelike, thus not visible in normal space.  This will reduce the number of particles that will be detected.
+
These particles are outside the light cone and are more timelike, thus not visible in normal space.  This will reduce the range in theta that Moller electrons will be detected.
  
  

Latest revision as of 16:47, 26 July 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


4.1.2 Phase space Limiting Particles

Since the angle phi has been constrained to remain constant, the x and y components of the momentum will increase in the positive first quadrant. This implies that the z component of the momentum must decrease by the relation:

[math]p^2=p_x^2+p_y^2+p_z^2[/math]

In the Center of Mass frame, this becomes:

[math]p_x^{*2}+p_y^{*2} = p^{*2}-p_z^{*2}[/math]


Since the momentum in the CM frame is a constant, this implies that pz must decrease. We can use the variable rapidity:


[math]y \equiv \frac {1}{2} \ln \left(\frac{E+p_z}{E-p_z}\right)[/math]


this implies that as

[math]p_z \rightarrow 0 \Rrightarrow \frac{E+p_z}{E-p_z} \rightarrow 1 \Rrightarrow \ln 1 \rightarrow 0 \Rrightarrow y=0[/math]


For forward travel in the light cone:

[math]p_z \rightarrow E \Rrightarrow \frac{E+p_z}{E-p_z} \rightarrow \infin \Rrightarrow \ln \infin \rightarrow \infin \Rrightarrow y \rightarrow \infin [/math]

This corresponds to the scattered electron proven earlier.

For backward travel in the light cone:

[math]p_z \rightarrow -E \Rrightarrow \frac{E+p_z}{E-p_z} \rightarrow 0 \Rrightarrow \ln 0 \rightarrow -\infin \Rrightarrow y \rightarrow -\infin [/math]


Similarly, this corresponds to the Moller electron.


For a particle that transforms from the Lab frame to the CM frame where the particle is not within the light cone:

[math]p_x^2+p_y^2=52.589054^2+9.272868^2=53.400MeV \gt 53.015 MeV (E) \therefore p_z \rightarrow imaginary[/math]

These particles are outside the light cone and are more timelike, thus not visible in normal space. This will reduce the range in theta that Moller electrons will be detected.




[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]