Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
<\center>
Line 13: | Line 13: | ||
<center><math>F=2E_1 2E_2|\vec {v}_1-\vec {v}_2|=4|E_1\vec{p}_2- E_2\vec {p}_1|</math></center> | <center><math>F=2E_1 2E_2|\vec {v}_1-\vec {v}_2|=4|E_1\vec{p}_2- E_2\vec {p}_1|</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | As shown earlier | ||
+ | |||
+ | <center><math>\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv m_1^2+2E_{1}E_{2}-2(\vec p_1 \vec p_2)+m_2^2</math></center> | ||
+ | |||
+ | |||
+ | For constant mass | ||
+ | |||
+ | <center><math>\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv 2m^2+2E_{1}E_{2}-2(\vec p_1 \vec p_2)</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\rightarrow 2E_{1}E_{2}- \mathbf (\mathbf P_1 +\mathbf P_2)^2 =- 2m^2+2(\vec p_1 \vec p_2)</math></center> | ||
Revision as of 21:05, 3 July 2017
Relativistic Differential Cross-section
dQ is the invariant Lorentz phase space factor
and F is the flux of incoming particles
As shown earlier
For constant mass
The invariant form of F is
In the center of mass frame