Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
<\center>
Line 6: | Line 6: | ||
− | <center><math>dQ=(2\pi)^4\delta^4(p_1 + p_2 - p_1^' - p_2^')\frac{d^ | + | <center><math>dQ=(2\pi)^4\delta^4(\vec p_1 +\vec p_2 - \vec p_1^' -\vec p_2^')\frac{d^3 \vec p_1^'}{(2\pi)^3 2E_1^'}\frac{d^3 \vec p_2^'}{(2\pi)^3 2E_2^'}</math></center> |
Line 21: | Line 21: | ||
− | <center><math>F_{cms}= | + | <center><math>F_{cms}=4 \vec p_i\sqrt {s}</math></center> |
− | <center><math>d\sigma=\frac{1}{ | + | <center><math>d\sigma=\frac{1}{4 \vec p_i\sqrt {s}}|\mathcal{M}|^2 dQ</math></center> |
− | <center><math>d^ | + | <center><math>d^3 \vec p_1^'=\vec p^{'3}_1 d \vec p^' d\Omega</math></center> |
+ | |||
+ | <center><math>(E_1^')^2=(\vec p_1^')^2+(m_1)^2</math></center> | ||
− | |||
+ | <center><math>E_1^' d E_1^'= \vec p_1^' d \vec p_1^'</math></center> | ||
− | |||
− | + | <center><math>dQ=\frac{1}{(4\pi)^2}\delta (E_1+E_2-E_1^'-E_2^')\frac{\vec p_1^'dE_1^'}{E_2^'}d\Omega</math><\center> | |
− | <center><math>dQ=\frac{1}{(4\pi)^2}\delta (E_1+E_2-E_1^'-E_2^')\frac{p_1^'dE_1^'}{E_2^'}d\Omega</math><\center> | ||
Line 46: | Line 46: | ||
− | <center><math>dW_f=dE_1^'+dE_2^'=\frac{p_1^' | + | <center><math>dW_f=dE_1^'+dE_2^'=\frac{\vec p_1^' d \vec p_1^'}{E_1^'}+\frac{p_2^' dp_2^'}{E_2^'}</math></center> |
In the center of mass frame | In the center of mass frame | ||
− | <center><math>p_1^'=p_2^'=p_f^' \rightarrow p_1^' | + | <center><math>|\vec p_1^|'=|\vec p_2^'|=|\vec p_f^'| \rightarrow \vec |p_1^' d \vec p_1^'|=|\vec p_2^' d \vec p_2^'|=|\vec p_f^' d \vec p_f^'|</math></center> |
Line 58: | Line 58: | ||
− | <center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\delta (W_i-W_f)\frac{p_f dW_f}{W_f}d\Omega</math></center> | + | <center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\delta (W_i-W_f)\frac{\vec p_f dW_f}{W_f}d\Omega</math></center> |
− | <center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\frac{p_f}{\sqrt s}d\Omega</math></center> | + | <center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\frac{\vec p_f}{\sqrt s}d\Omega</math></center> |
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> | <center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> |
Revision as of 16:49, 1 July 2017
Relativistic Differential Cross-section
dQ is the invariant Lorentz phase space factor
and F is the flux of incoming particles
The invariant form of F is
In the center of mass frame