Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
<\center>
Line 50: | Line 50: | ||
<center><math>dW_f=\frac{W_f}{E_2^'}dE_1^'</math></center> | <center><math>dW_f=\frac{W_f}{E_2^'}dE_1^'</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\delta (W_i-W_f)\frac{p_f dW_f}{W_f}d\Omega</math></center> | ||
+ | |||
+ | |||
+ | <center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\frac{p_f}{\sqrt s}d\Omega</math></center> | ||
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> | <center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> |
Revision as of 16:33, 1 July 2017
Relativistic Differential Cross-section
dQ is the invariant Lorentz phase space factor
and F is the flux of incoming particles
The invariant form of F is
In the center of mass frame