Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
<\center>
Line 32: | Line 32: | ||
<center><math>E_1^' d E_1^'= p_1^' d p_1^'</math></center> | <center><math>E_1^' d E_1^'= p_1^' d p_1^'</math></center> | ||
+ | |||
+ | |||
+ | <center><math>dQ=\frac{1}{(4\pi)^2}\delta (E_1+E_2-E_1^'-E_2^')\frac{p_1^'dE_1^'}{E_2^'}d\Omega</math><\center> | ||
+ | |||
+ | |||
+ | <center><math>W_i \equiv E_1+E_2 \qquad \qquad W_f \equiv E_1^'+E_2^'</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>dW_f=dE_1^'+dE_2^'=\frac{p_1^' dp_1^'}{E_1^'}+\frac{p_2^' dp_2^'}{E_2^'}</math></center> | ||
+ | |||
+ | |||
+ | In the center of mass frame | ||
+ | <center><math>p_1^'=p_2^'=p_f^' \rightarrow p_1^' dp_1^'=p_2^' dp_2^'=p_f^' dp_f^'</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>dW_f=\frac{W_f}{E_2^'}dE_1^'</math></center> | ||
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> | <center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> |
Revision as of 16:09, 1 July 2017
Relativistic Differential Cross-section
dQ is the invariant Lorentz phase space factor
and F is the flux of incoming particles
The invariant form of F is
In the center of mass frame