Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
Line 25: | Line 25: | ||
<center><math>d^3p_1^'=p^{'3}_1 d_p^' d\Omega</math></center> | <center><math>d^3p_1^'=p^{'3}_1 d_p^' d\Omega</math></center> | ||
+ | |||
+ | |||
+ | <center><math>(E_1^')^2=(p_1^')^2+(m_1)^2</math></center> | ||
+ | |||
+ | |||
+ | <center><math>E_1^' d E_1^'= p_1^' d p_1^'</math></center> | ||
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> | <center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> |
Revision as of 15:57, 1 July 2017
Relativistic Differential Cross-section
dQ is the invariant Lorentz phase space factor
and F is the flux of incoming particles
The invariant form of F is