Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
Line 19: | Line 19: | ||
<center><math>F=4\sqrt{(\vec {p}_1 \cdot \vec {p}_2)^2-(m_1m_2)^2}</math></center> | <center><math>F=4\sqrt{(\vec {p}_1 \cdot \vec {p}_2)^2-(m_1m_2)^2}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>F_{cms}=4p_i\sqrt {s}</math></center> | ||
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> | <center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> |
Revision as of 15:47, 1 July 2017
Relativistic Differential Cross-section
dQ is the invariant Lorentz phase space factor
and F is the flux of incoming particles
The invariant form of F is