Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
(Created page with "<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center>") |
|||
Line 1: | Line 1: | ||
+ | <center><math>d\sigma=\frac{1}{F}|\mathcal{M}|^2 dQ</math></center> | ||
+ | |||
+ | dQ is the invariant Lorentz phase space factor and F is the flux of incoming particles | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>dQ=(2π)^4\delta^4(p_1 + p_2 − p_1^' − p_2^')\frac{d^3p_1^'}{(2π)^32E_1^'}\frac{d^3p_2^'}{{(2π)^32E_2^'}</math></center> | ||
+ | |||
+ | |||
+ | |||
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> | <center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> |
Revision as of 15:34, 1 July 2017
dQ is the invariant Lorentz phase space factor and F is the flux of incoming particles