Difference between revisions of "Relativistic Units"

From New IAC Wiki
Jump to navigation Jump to search
Line 30: Line 30:
  
  
The 4-vectors are defined to be in units of distance and as such the time must be multiplied by the speed of light to meet this requirement.  For simplicity, the units of c can be chosen to be 1.
+
The 4-vectors and 4-momenta are defined to be in units of distance and momentum and as such must be multiplied or divided respectively by the speed of light to meet this requirement.  For simplicity, the units of c can be chosen to be 1.
  
  
 
DeBroglie's equation
 
DeBroglie's equation
  
<center><math>E=\hbar \omega</math></center>
+
<center><math>E=\hbar \omega \rightarrow \mathbf P=\hbar \mathbf K</math></center>
 +
 
 +
 
 +
 
 +
 
 +
<center><math>\mathbf{K} \equiv
 +
\begin{bmatrix}
 +
k^0 \\
 +
k^1 \\
 +
k^2 \\
 +
k^3
 +
\end{bmatrix}=
 +
\begin{bmatrix}
 +
\frac{\omega}{c} \\
 +
k_x \\
 +
k_y \\
 +
k_z
 +
\end{bmatrix}</math></center>

Revision as of 15:54, 27 June 2017

From the definition of 4-vectors shown earlier, we know that

[math]\mathbf{R} \equiv \begin{bmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{bmatrix}= \begin{bmatrix} ct \\ x \\ y \\ z \end{bmatrix} \qquad \qquad \mathbf{P} \equiv \begin{bmatrix} p^0 \\ p^1 \\ p^2 \\ p^3 \end{bmatrix}= \begin{bmatrix} \frac{E}{c} \\ p_x \\ p_y \\ p_z \end{bmatrix}[/math]


The 4-vectors and 4-momenta are defined to be in units of distance and momentum and as such must be multiplied or divided respectively by the speed of light to meet this requirement. For simplicity, the units of c can be chosen to be 1.


DeBroglie's equation

[math]E=\hbar \omega \rightarrow \mathbf P=\hbar \mathbf K[/math]



[math]\mathbf{K} \equiv \begin{bmatrix} k^0 \\ k^1 \\ k^2 \\ k^3 \end{bmatrix}= \begin{bmatrix} \frac{\omega}{c} \\ k_x \\ k_y \\ k_z \end{bmatrix}[/math]