Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
Line 33: | Line 33: | ||
− | <center><math>t \equiv - | + | <center><math>t \equiv -2E^{*2}(1-\cos{\theta})</math></center> |
− | <center><math>u \equiv - | + | <center><math>u \equiv -2E^{*2}(1+\cos{\theta})</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left ( \frac{( | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left ( \frac{(4E^{*4}(1-\cos{\theta})^2+16E^{*4})}{4E^{*4}(1+\cos{\theta})^2}-\frac{32E^{*2}}{4E^{*4}(1+\cos{\theta})(1-\cos{\theta})}+\frac{(4E^{*4}(1+\cos{\theta})^2+16E^{*4})}{4E^{*4}(1-\cos{\theta})^2}\right )</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}4E^{*4}}\left ( \frac{(4E^{*4}(1-\cos{\theta})^2+16E^{*4})}{(1+\cos{\theta})^2}-\frac{32E^{*2}}{(1+\cos{\theta})(1-\cos{\theta})}+\frac{(4E^{*4}(1+\cos{\theta})^2+16E^{*4})}{(1-\cos{\theta})^2}\right )</math></center> |
Revision as of 02:08, 26 June 2017
Using the fine structure constant
In the center of mass frame the Mandelstam variables are given by: