Difference between revisions of "Differential Cross-Section"

From New IAC Wiki
Jump to navigation Jump to search
Line 39: Line 39:
  
  
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left ( \frac{(4p^{*4}(1-\cos{\theta})^2+16E^{*4})}{u^2}-\frac{2s^2}{tu}+\frac{(u^2+s^2)}{t^2}\right )</math></center>
+
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left ( \frac{(4p^{*4}(1-\cos{\theta})^2+16E^{*4})}{4p^{*4}(1+\cos{\theta})^2}-\frac{2s^2}{tu}+\frac{(u^2+s^2)}{t^2}\right )</math></center>

Revision as of 01:44, 26 June 2017

dσdΩ=164π2spfinalpinitial|M|2


M=e2(ust+tsu)


M2=e4(ust+tsu)(ust+tsu)


M2=e4((us)2t2+(ts)2u2+2(us)t(ts)u)


M2=e4((u22us+s2)t2+(t22ts+s2)u2+2(utst+s2us)tu)


M2=e4((t2+s2)u22s2tu+(u2+s2)t2)


Using the fine structure constant

αe24π


dσdΩ=α22s((t2+s2)u22s2tu+(u2+s2)t2)


In the center of mass frame the Mandelstam variables are given by:

s4E2


t2p2(1cosθ)


u2p2(1+cosθ)


dσdΩ=α28E2((4p4(1cosθ)2+16E4)4p4(1+cosθ)22s2tu+(u2+s2)t2)