Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
</centert>
Line 26: | Line 26: | ||
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{2s}\left ( \frac{(t^2+s^2)}{u^2}-\frac{2s^2}{tu}+\frac{(u^2+s^2)}{t^2}\right )</math></center> | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{2s}\left ( \frac{(t^2+s^2)}{u^2}-\frac{2s^2}{tu}+\frac{(u^2+s^2)}{t^2}\right )</math></center> | ||
+ | |||
+ | |||
+ | In the center of mass frame the Mandelstam variables are given by: | ||
+ | |||
+ | <center><math>s \equiv 3E^{*2}</math></centert> | ||
+ | |||
+ | |||
+ | <center><math>t \equiv -2p^{*2}(1-\cos{\theta})</math></center> | ||
+ | |||
+ | |||
+ | <center><math>u \equiv -2p^{*2}(1+\cos{\theta})</math></center> |
Revision as of 01:37, 26 June 2017
Using the fine structure constant
In the center of mass frame the Mandelstam variables are given by: