Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
Line 6: | Line 6: | ||
− | Using the fact that <math>\mathbf P_1^{'*} \mathbf P_2^{'*}=\mathbf P_1^*\mathbf P_2^* \quad \mathbf P_1^{'*} \mathbf P_1^{*}=\mathbf P_2^{'*}\mathbf P_2^* \quad \mathbf P_1^{*} \mathbf P_2^{'*}=\mathbf P_2^*\mathbf P_1^{'*}</math> | + | Using the fact that <math>\mathbf P_1^{'*} \mathbf P_2^{'*}=\mathbf P_1^*\mathbf P_2^* \quad & \quad \mathbf P_1^{'*} \mathbf P_1^{*}=\mathbf P_2^{'*}\mathbf P_2^* \quad & \quad \mathbf P_1^{*} \mathbf P_2^{'*}=\mathbf P_2^*\mathbf P_1^{'*}</math> |
− | <center><math> \mathfrak{M}_{e^-e^-}= e^2\left ( \frac{2\mathbf P_1 \mathbf P_2+2\mathbf P_{1'} \mathbf P_2}{(\mathbf P_{2'}-\mathbf P_2)^2}- \frac{2\mathbf P_1 \mathbf P_2+2\mathbf P_1 \mathbf P_{1'}}{(\mathbf P_{1'}-\mathbf P_2)^2} \right )</math></center> | + | <center><math> \mathfrak{M}_{e^-e^-}= e^2\left ( \frac{2\mathbf P_1^* \mathbf P_2^*+2\mathbf P_{1}^{'*} \mathbf P_2^*}{(\mathbf P_{2}^{'*}-\mathbf P_2^*)^2}- \frac{2\mathbf P_1^* \mathbf P_2^*+2\mathbf P_1^* \mathbf P_{1}^{'*}}{(\mathbf P_{1}^{'*}-\mathbf P_2^{'*})^2} \right )</math></center> |
Revision as of 15:55, 24 June 2017
Using the fact that