Difference between revisions of "Differential Cross-Section"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<center><math>-i \mathfrak{M}_{e^-e^-}=-i \left ( \frac{e^2(\mathbf P_A+\mathbf P_C)_{\mu}(\mathbf P_B+\mathbf P_D)^{\mu}}{(\mathbf P_D-\mathbf P_B)^2}- \frac{e^2(\mathbf P_A+\mathbf P_D)_{\mu}(\mathbf P_B+\mathbf P_C)^{\mu}}{(\mathbf P_C-\mathbf P_B)^2} \right )</math></center>
+
<center><math>-i \mathfrak{M}_{e^-e^-}=-i \left ( \frac{e^2(\mathbf P_1+\mathbf P_C)_{\mu}(\mathbf P_2+\mathbf P_D)^{\mu}}{(\mathbf P_D-\mathbf P_2)^2}- \frac{e^2(\mathbf P_1+\mathbf P_D)_{\mu}(\mathbf P_2+\mathbf P_C)^{\mu}}{(\mathbf P_C-\mathbf P_2)^2} \right )</math></center>
  
  
<center><math> \mathfrak{M}_{e^-e^-}= e^2\left ( \frac{\mathbf P_A \mathbf P_B+\mathbf P_C \mathbf P_D+\mathbf P_C \mathbf P_B+\mathbf P_A \mathbf P_D}{(\mathbf P_D-\mathbf P_B)^2}- \frac{\mathbf P_A \mathbf P_B+\mathbf P_D \mathbf P_C+\mathbf P_D \mathbf P_B+\mathbf P_A \mathbf P_C}{(\mathbf P_C-\mathbf P_B)^2} \right )</math></center>
+
<center><math> \mathfrak{M}_{e^-e^-}= e^2\left ( \frac{\mathbf P_1 \mathbf P_2+\mathbf P_C \mathbf P_D+\mathbf P_C \mathbf P_2+\mathbf P_1 \mathbf P_D}{(\mathbf P_D-\mathbf P_2)^2}- \frac{\mathbf P_1 \mathbf P_2+\mathbf P_D \mathbf P_C+\mathbf P_D \mathbf P_2+\mathbf P_1 \mathbf P_C}{(\mathbf P_C-\mathbf P_2)^2} \right )</math></center>
  
  
  
 
<center><math>\mathfrak{M}_{e^-e^-}=e^2 \left (\frac{u-s}{t}+\frac{t-s}{u} \right )</math></center>
 
<center><math>\mathfrak{M}_{e^-e^-}=e^2 \left (\frac{u-s}{t}+\frac{t-s}{u} \right )</math></center>

Revision as of 15:00, 24 June 2017

[math]-i \mathfrak{M}_{e^-e^-}=-i \left ( \frac{e^2(\mathbf P_1+\mathbf P_C)_{\mu}(\mathbf P_2+\mathbf P_D)^{\mu}}{(\mathbf P_D-\mathbf P_2)^2}- \frac{e^2(\mathbf P_1+\mathbf P_D)_{\mu}(\mathbf P_2+\mathbf P_C)^{\mu}}{(\mathbf P_C-\mathbf P_2)^2} \right )[/math]


[math] \mathfrak{M}_{e^-e^-}= e^2\left ( \frac{\mathbf P_1 \mathbf P_2+\mathbf P_C \mathbf P_D+\mathbf P_C \mathbf P_2+\mathbf P_1 \mathbf P_D}{(\mathbf P_D-\mathbf P_2)^2}- \frac{\mathbf P_1 \mathbf P_2+\mathbf P_D \mathbf P_C+\mathbf P_D \mathbf P_2+\mathbf P_1 \mathbf P_C}{(\mathbf P_C-\mathbf P_2)^2} \right )[/math]


[math]\mathfrak{M}_{e^-e^-}=e^2 \left (\frac{u-s}{t}+\frac{t-s}{u} \right )[/math]