Difference between revisions of "Scattered and Moller Electron Energies in CM Frame"
Jump to navigation
Jump to search
Line 67: | Line 67: | ||
| style="background: gray" | <math>\Rightarrow E_1=\frac{106.030760886 MeV}{2}=53.015380443 MeV=E_2</math> | | style="background: gray" | <math>\Rightarrow E_1=\frac{106.030760886 MeV}{2}=53.015380443 MeV=E_2</math> | ||
|} | |} | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | <center><math>\textbf{\underline{Navigation}}</math> | ||
+ | |||
+ | [[Limits_based_on_Mandelstam_Variables|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]] | ||
+ | [[Special_Case_of_Equal_Mass_Particles|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> |
Revision as of 01:50, 16 June 2017
Scattered and Moller Electron energies in CM
We can use the Mandelstam variable s, the square of the center of mass energy, to find
As shown earlier, the square of a 4-momentum is
This gives,
For the case
Using the relationship
In the center of mass frame of reference,
Using the relativistic energy equation