Difference between revisions of "Scattered and Moller Electron Energies in CM Frame"
Jump to navigation
Jump to search
Line 12: | Line 12: | ||
We can use the Mandelstam variable s, the square of the center of mass energy, to find <math>E^*</math> | We can use the Mandelstam variable s, the square of the center of mass energy, to find <math>E^*</math> | ||
+ | |||
+ | <center><math>s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2</math></center> | ||
+ | |||
+ | |||
+ | <center><math>s \equiv \mathbf P_1^{*2}+2 \mathbf P_1^* \mathbf P_2^*+ \mathbf P_2^{*2}</math></center> | ||
+ | |||
+ | |||
+ | As shown earlier, the square of a 4-momentum is | ||
+ | |||
+ | |||
+ | <center><math>\mathbf P^{2} \equiv m^2</math></center> | ||
+ | |||
+ | This gives, | ||
+ | <center><math>s \equiv m_1^{2}+2 \mathbf P_1^* \mathbf P_2^*+ m_2^{2}</math></center> | ||
+ | |||
+ | |||
+ | For the case <math>m_1=m_2=m</math> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>s \equiv 2m^{2}+2 \mathbf P_1^* \mathbf P_2^*</math></center> | ||
+ | |||
+ | Using the relationship | ||
+ | |||
+ | |||
+ | <center><math>\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>s \equiv 2m^2+2(E_1^*E_2^*-\vec p \ _1^* \vec p \ _2^*)</math></center> | ||
+ | |||
+ | |||
+ | In the center of mass frame of reference, | ||
+ | |||
+ | <center><math>E_1^*=E_2^* \quad and \quad \vec p \ _1^*=-\vec p \ _2^*</math></center> | ||
+ | |||
+ | |||
+ | <center><math>s_{CM} \equiv 2m^2+2E_1^{*2}+2\vec p_1 \ ^{*2} </math></center> | ||
+ | |||
+ | |||
+ | Using the relativistic energy equation | ||
+ | |||
+ | <center><math>E^2 \equiv \vec p_1 \ ^2+m^2</math></center> | ||
+ | |||
+ | |||
+ | <center><math>s_{CM} \equiv 2m^2+2m^2+2\vec p_1 \ ^{*2}+\vec p_1 \ ^{*2})</math></center> | ||
+ | |||
+ | |||
+ | <center><math>s_{CM}=4(m^2+\vec p_1 \ ^{*2})=(2E_1^*)^{2}=E^{*2}</math></center> |
Revision as of 01:45, 16 June 2017
Scattered and Moller Electron energies in CM
We can use the Mandelstam variable s, the square of the center of mass energy, to find
As shown earlier, the square of a 4-momentum is
This gives,
For the case
Using the relationship
In the center of mass frame of reference,
Using the relativistic energy equation