Difference between revisions of "Limits based on Mandelstam Variables"

From New IAC Wiki
Jump to navigation Jump to search
Line 14: Line 14:
  
  
<center><math>s+t+u=(4(m^2+\vec p \ ^{*2}))+(-2 p \ ^{*2}(1-cos\ \theta))+(-2 p \ ^{*2}(1+cos\ \theta))</math></center>
+
<center><math>s+t+u=(4(m^2+ p \ ^{*2}))+(-2 p \ ^{*2}(1-cos\ \theta))+(-2 p \ ^{*2}(1+cos\ \theta))</math></center>
  
  
Line 28: Line 28:
  
 
<center><math>s \ge 4m^2</math></center>
 
<center><math>s \ge 4m^2</math></center>
 +
 +
 +
In turn, this implies
 +
 +
 +
<center><math> t \le 0  \qquad u \le 0</math></center>

Revision as of 23:44, 9 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


Limits based on Mandelstam Variables

Since the Mandelstam variables are the scalar product of 4-momenta, which are invariants, they are invariants as well. The sum of these invariant variables must also be invariant as well. Find the sum of the 3 Mandelstam variables when the two particles have equal mass in the center of mass frame gives:


[math]s+t+u=(4(m^2+ p \ ^{*2}))+(-2 p \ ^{*2}(1-cos\ \theta))+(-2 p \ ^{*2}(1+cos\ \theta))[/math]


[math]s+t+u \equiv 4m^2[/math]


Since

[math]s \equiv 4(m^2+\vec p \ ^{*2})[/math]


This implies

[math]s \ge 4m^2[/math]


In turn, this implies


[math] t \le 0 \qquad u \le 0[/math]