Difference between revisions of "Mandelstam Representation"

From New IAC Wiki
Jump to navigation Jump to search
Line 25: Line 25:
  
  
==s Channel==
 
  
The s quantity is known as the square of the center of mass energy (invariant mass)
 
<center><math>s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2</math></center>
 
 
 
 
 
<center><math>s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2</math></center>
 
 
 
<center><math>s \equiv \mathbf P_1^{*2}+2 \mathbf P_1^* \mathbf P_2^*+ \mathbf P_2^{*2}</math></center>
 
 
 
As shown earlier, the square of a 4-momentum is
 
 
 
<center><math>\mathbf P^{2} \equiv m^2</math></center>
 
 
 
<center><math>s \equiv m^{2}+2 \mathbf P_1^* \mathbf P_2^*+  m_2^{2}</math></center>
 
 
 
This gives
 
 
<center><math>s \equiv  2m^{2}+2 \mathbf P_1^* \mathbf P_2^*</math></center>
 
 
 
Similarly, the scalar product of two 4-momentums
 
 
<center><math>s \equiv 2m^2+2(E_1^*E_2^*-\vec p_1^* \vec p_2^*)</math></center>
 
 
 
In the center of mass frame of reference,
 
 
<center><math>E_1^*=E_2^* \quad and \quad \vec p_1^*=-\vec p_2^*</math></center>
 
 
 
<center><math>s \equiv 2m^2+2(E_1^{*2}+\vec p_1^{*2} )</math></center>
 
 
 
Using the relativistic energy equation
 
 
<center><math>E^2 \equiv p^2+m^2</math></center>
 
 
 
<center><math>s \equiv 2m^2+2((m^2+p_1^{*2})+p_1^{*2})</math></center>
 
 
 
<center><math>s=4(m_{CM}^2+p_{CM}^2)</math></center>
 
 
==t Channel==
 
The t quantity is known as the square of the 4-momentum transfer
 
 
<center><math>t \equiv \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2=\left({\mathbf P_2^{*}}+ {\mathbf P_2^{'*}}\right)^2</math></center>
 
 
<center>[[File:400px-CMcopy.png]]</center>
 
 
 
 
<center><math>t \equiv \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2</math></center>
 
 
 
<center><math>t \equiv P_1^{*2}-2P_1^*P_1^{'*}+P_1^{'*2}</math></center>
 
 
 
<center><math>t \equiv 2m_1^2-2E_1^*E_1^{'*}+2p_1^*p_1^{'*}</math></center>
 
 
 
<center><math>t \equiv 2m_1^*-2E_1^{*2}+2p_1^{*2}cos\ \theta</math></center>
 
 
 
<center><math>t \equiv -2p_1^{*2}(1-cos\ \theta)</math></center>
 
 
==u Channel==
 
  
  

Revision as of 22:25, 8 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

Mandelstam Representation

Mandelstam.png


[math]\Longrightarrow \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2\equiv s[/math]


[math]\Longrightarrow \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2=\left({\mathbf P_2^*}- {\mathbf P_2^{'*}}\right)^2\equiv t[/math]


[math]\Longrightarrow \left({\mathbf P_1^*}- {\mathbf P_2^{'*}}\right)^2=\left({\mathbf P_2^*}- {\mathbf P_1^{'*}}\right)^2\equiv u[/math]






[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]