Difference between revisions of "4-momenta"

From New IAC Wiki
Jump to navigation Jump to search
Line 2: Line 2:
  
 
[[4-vectors|<math>\vartriangleleft </math>]]
 
[[4-vectors|<math>\vartriangleleft </math>]]
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
+
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]
 
[[4-vectors|<math>\vartriangleright </math>]]
 
[[4-vectors|<math>\vartriangleright </math>]]
  
Line 83: Line 83:
  
 
[[4-vectors|<math>\vartriangleleft </math>]]
 
[[4-vectors|<math>\vartriangleleft </math>]]
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
+
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]
 
[[4-vectors|<math>\vartriangleright </math>]]
 
[[4-vectors|<math>\vartriangleright </math>]]
  
 
</center>
 
</center>

Revision as of 20:28, 8 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

4-momenta

As was previously shown for the space-time 4-vector, a similar 4-vector can be composed of momentum. Using index notation, the energy and momentum components can be combined into a single "4-vector" [math]\mathbf{p^{\mu}},\ \mu=0,\ 1,\ 2,\ 3[/math], that has units of momentum(i.e. E/c is a distance).

[math]\mathbf{P} \equiv \begin{bmatrix} p^0 \\ p^1 \\ p^2 \\ p^3 \end{bmatrix}= \begin{bmatrix} E/c \\ p_x \\ p_y \\ p_z \end{bmatrix}[/math]


As shown earlier,


[math]\mathbf R \cdot \mathbf R = x_0^2-(x_1^2+x_2^2+x_3^2)[/math]


Following the 4-vector of space-time for momentum-energy,


[math]\mathbf P \cdot \mathbf P = p_0^2-(p_1^2+p_2^2+p_3^2)[/math]


[math]\mathbf P \cdot \mathbf P = \frac{E^2}{c^2}-\vec p\ ^2[/math]


Using the relativistic equation for energy


[math]E^2=\vec p\ ^2+m^2[/math]


[math]\mathbf P \cdot \mathbf P = \frac{E^2}{c^2}-E^2+m^2[/math]


[math]\mathbf P \cdot \mathbf P = m^2[/math]


A 4-momenta vector can be composed of different 4-momenta vectors,

[math]\mathbf P \equiv \mathbf P_1 +\mathbf P_2[/math]


This allows us to write

[math]\mathbf P^2 \equiv (\mathbf P_1+\mathbf P_2)^2[/math]


[math]\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv \mathbf P_1^2+2 \mathbf P_1 \mathbf P_2+\mathbf P_2^2[/math]


Using

[math]\mathbf (\mathbf P_1 +\mathbf P_2)^2=m^2[/math]


[math]\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv m_1^2+2 \mathbf P_1 \mathbf P_2+m_2^2[/math]




[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]