|
|
Line 13: |
Line 13: |
| | | |
| | | |
− | As shown earlier, for identical masses in the center of mass frame, and the mass is invariant between frames | + | As shown earlier, the square of a 4-momentum is |
| + | |
| | | |
| <center><math>P^{*2}=m^2</math></center> | | <center><math>P^{*2}=m^2</math></center> |
Revision as of 17:23, 8 June 2017
Limits based on Mandelstam Variables
s Channel
[math]s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2[/math]
[math]s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2[/math]
[math]s \equiv \mathbf P_1^{*2}+2 \mathbf P_1^* \mathbf P_2^*+ \mathbf P_2^{*2}[/math]
As shown earlier, the square of a 4-momentum is
[math]P^{*2}=m^2[/math]
[math]s \equiv m^{2}+2 \mathbf P_1^* \mathbf P_2^*+ m_2^{2}[/math]
[math]s \equiv 2m^{2}+2 \mathbf P_1^* \mathbf P_2^*[/math]
[math]s=4(m_{CM}^2+p_{CM}^2)[/math]
t Channel
[math]t \equiv \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2=\left({\mathbf P_2^{*}}+ {\mathbf P_2^{'*}}\right)^2[/math]
[math]t \equiv \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2[/math]
[math]t \equiv P_1^{*2}-2P_1^*P_1^{'*}+P_1^{'*2}[/math]
[math]t \equiv 2m_1^2-2E_1^*E_1^{'*}+2p_1^*p_1^{'*}[/math]
[math]t \equiv 2m_1^*-2E_1^{*2}+2p_1^{*2}cos\ \theta[/math]
[math]t \equiv -2p_1^{*2}(1-cos\ \theta)[/math]
u Channel