Difference between revisions of "Relativistic Frames of Reference"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
 
<center><math>\textbf{\underline{Navigation}}</math>
 
<center><math>\textbf{\underline{Navigation}}</math>
  
 
[[Uniform_distribution_in_Energy_and_Theta_LUND_files|<math>\vartriangleleft </math>]]
 
[[Uniform_distribution_in_Energy_and_Theta_LUND_files|<math>\vartriangleleft </math>]]
 
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
 
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
[[Phase_space_Limiting_Particles|<math>\vartriangleright </math>]]
+
[[4-vectors|<math>\vartriangleright </math>]]
  
 
</center>
 
</center>
Line 90: Line 89:
 
[[Uniform_distribution_in_Energy_and_Theta_LUND_files|<math>\vartriangleleft </math>]]
 
[[Uniform_distribution_in_Energy_and_Theta_LUND_files|<math>\vartriangleleft </math>]]
 
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
 
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
[[Phase_space_Limiting_Particles|<math>\vartriangleright </math>]]
+
[[4-vectors|<math>\vartriangleright </math>]]
  
 
</center>
 
</center>

Revision as of 01:20, 4 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

Relativistic Frames of Reference

From the Galilean description of motion for a frame of reference moving relative to another frame considered stationary we know that


Galilean Frames of Reference
Figure 2.1: Primed reference frame moving in the z direction with velocity v.


[math]t= t'[/math]
[math]x=x'[/math]
[math]y=y'[/math]
[math]z=z'+vt[/math]


Using Einstein's Theory of Relativity, we know that the speed of light is a constant, c, for all reference frames. In the unprimed frame, from the definition of speed:


[math]speed=\frac{Distance}{Time}[/math]


[math]c=\frac{d}{t}[/math]


where

[math]c=3\times 10^8\ m/s[/math]

Using the distance equation in a Cartesian coordinate system, the equation for the speed of light becomes


[math]c=\frac{\sqrt{x^2+y^2+z^2}}{t}[/math]


Following the postulate of Special Relativity, this implies for the primed frame


[math]c=\frac{\sqrt{x^{'2}+y^{'2}+z^{'2}}}{t}[/math]



We can rewrite this as


[math]\frac{x^{'2}+y^{'2}+z^{'2}}{t^{'2}}= c^2=\frac{x^2+y^2+z^2}{t^2}[/math]


This is possible since the ratios of distance to time are multiples of the same base, i.e. the square of the speed of light [math](\frac{3\times 10^8\ m}{s})^2[/math]. Therefore for the relative change in the time in one frame, the distance must change by the same factor to maintain the same constant. With this we can write


[math]c^2 t^{'2}=x^{'2}+y^{'2}+z^{'2}\ \ \ \ \ c^2 t^{2}=x^2+y^2+ z^2[/math]



[math]\Rightarrow c^2 t^{'2}- x^{'2}-y^{'2}-z^{'2}= c^2 t^{2}-x^2-y^2-z^2[/math]


This quantity is known as the time space interval [math]s^2[/math]


[math]s^2\equiv c^2 t^{'2}-x^{'2}-y^{'2}-z^{'2}= c^2 t^{2}-x^2-y^2-z^2[/math]


Since the speed of light is a constant for all frames of reference, this allows the space time interval to also be invariant for inertial frames.



[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]