Difference between revisions of "Relativistic Frames of Reference"

From New IAC Wiki
Jump to navigation Jump to search
Line 12: Line 12:
  
 
From the Galilean description of motion for a frame of reference moving relative to another frame considered stationary we know that
 
From the Galilean description of motion for a frame of reference moving relative to another frame considered stationary we know that
 +
 +
 +
 +
<center>[[File:GalileanFrames.png|thumb|center|500px|alt=Galilean Frames of Reference|'''Figure 2.1:''' Primed reference frame moving in the z direction with velocity v.  ]]</center>
 +
 +
  
 
<center><math>t= t'</math></center>
 
<center><math>t= t'</math></center>
Line 22: Line 28:
  
  
 +
 +
Using Einstein's Theory of Relativity, we know that the speed of light is a constant, c, for all reference frames.  In the unprimed frame, from the definition of speed:
 +
 +
 +
<center><math>speed=\frac{\Delta Distance}{\Delta Time}</math></center>
 +
 +
 +
<center><math>c=\frac{\Delta d}{\Delta t}</math></center>
 +
 +
 +
where
 +
 +
<center><math>c=3E8\ m/s</math></center>
 +
 +
Using the distance equation in a Cartesian coordinate system, the change in distance becomes
  
  
 +
<center><math>c=\frac{\sqrt{(\Delta x)^2+(\Delta y)^2+(\Delta z)^2}{\Delta t}</math></center>
  
<center>[[File:GalileanFrames.png|thumb|center|500px|alt=Galilean Frames of Reference|'''Figure 2.1:''' Primed reference frame moving in the z direction with velocity v.  ]]</center>
 
  
  

Revision as of 03:10, 3 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

Relativistic Frames of Reference

From the Galilean description of motion for a frame of reference moving relative to another frame considered stationary we know that


Galilean Frames of Reference
Figure 2.1: Primed reference frame moving in the z direction with velocity v.


[math]t= t'[/math]
[math]x=x'[/math]
[math]y=y'[/math]
[math]z=z'+vt[/math]


Using Einstein's Theory of Relativity, we know that the speed of light is a constant, c, for all reference frames. In the unprimed frame, from the definition of speed:


[math]speed=\frac{\Delta Distance}{\Delta Time}[/math]


[math]c=\frac{\Delta d}{\Delta t}[/math]


where

[math]c=3E8\ m/s[/math]

Using the distance equation in a Cartesian coordinate system, the change in distance becomes


[math]c=\frac{\sqrt{(\Delta x)^2+(\Delta y)^2+(\Delta z)^2}{\Delta t}[/math]




[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]