Difference between revisions of "Limits based on Mandelstam Variables"
Jump to navigation
Jump to search
Line 8: | Line 8: | ||
<center><math>{\mathbf P_1^*}\equiv \left(\begin{matrix} E_1\\ p_{x_1} \\ p_{y_1} \\ p_{z_1} \end{matrix} \right) \ \ \ \ {\mathbf P_2^*}\equiv \left(\begin{matrix} E_2\\ p_{x_2} \\ p_{y_2} \\ p_{z_2} \end{matrix} \right)</math></center> | <center><math>{\mathbf P_1^*}\equiv \left(\begin{matrix} E_1\\ p_{x_1} \\ p_{y_1} \\ p_{z_1} \end{matrix} \right) \ \ \ \ {\mathbf P_2^*}\equiv \left(\begin{matrix} E_2\\ p_{x_2} \\ p_{y_2} \\ p_{z_2} \end{matrix} \right)</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math> \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left(\begin{matrix} E_1\\ p_{x_1} \\ p_{y_1} \\ p_{z_1} \end{matrix} \right)+\left(\begin{matrix} E_2\\ p_{x_2} \\ p_{y_2} \\ p_{z_2} \end{matrix} \right)</math></center> | ||
+ | |||
+ | |||
+ | <center><math> \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left(\begin{matrix} E_1\\ p_{x_1} \\ p_{y_1} \\ p_{z_1} \end{matrix} \right)+\left(\begin{matrix} E_2\\ -p_{x_1} \\ -p_{y_1} \\ -p_{z_1} \end{matrix} \right)</math></center> | ||
+ | |||
+ | |||
+ | <center><math> \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left(\begin{matrix} E_1+E_2\\0 \\ 0 \\ 0 \end{matrix} \right)</math></center> |
Revision as of 20:23, 1 June 2017
Limits based on Mandelstam Variables
In the center of mass frame, the momentum of the particles interacting are equal and opposite, i.e. . However, the 4-momentum still retains an energy component, which as a scalar quantity, can not be countered by another particle's direction of motion.