Difference between revisions of "Left Hand Wall"
Jump to navigation
Jump to search
| Line 82: | Line 82: | ||
0.09156\ cos\ 6^{\circ}+t\ cos\ (6^{\circ} -29.5^{\circ}) \\ | 0.09156\ cos\ 6^{\circ}+t\ cos\ (6^{\circ} -29.5^{\circ}) \\ | ||
0.09156\ sin\ 6^{\circ}+t\ sin\ (6^{\circ}-29.5^{\circ}) \\ | 0.09156\ sin\ 6^{\circ}+t\ sin\ (6^{\circ}-29.5^{\circ}) \\ | ||
| + | 0 | ||
| + | \end{bmatrix}</math></center> | ||
| + | |||
| + | |||
| + | <center><math> | ||
| + | \begin{bmatrix} | ||
| + | x'' \\ | ||
| + | y'' \\ | ||
| + | z'' | ||
| + | \end{bmatrix}= | ||
| + | \begin{bmatrix} | ||
| + | 0.09156\ cos\ 6^{\circ}+t\ cos\ (-23.5^{\circ}) \\ | ||
| + | 0.09156\ sin\ 6^{\circ}+t\ sin\ (-23.5^{\circ}) \\ | ||
0 | 0 | ||
\end{bmatrix}</math></center> | \end{bmatrix}</math></center> | ||
Revision as of 14:34, 28 April 2017
Parameterizing this
where the negative sign is applied to the sine function by the even odd relationships of cosine and sine, i.e. ( sin(-t)=-sin(t), cos(-t)=cos(t)) and the fact that the y component is in the 4th quadrant.
Using the equation for y we can solve for t
Substituting this into the expression for x