Difference between revisions of "Left Hand Wall"

From New IAC Wiki
Jump to navigation Jump to search
Line 71: Line 71:
 
0
 
0
 
\end{bmatrix}</math></center>
 
\end{bmatrix}</math></center>
 +
 +
 +
<center><math>
 +
\begin{bmatrix}
 +
x'' \\
 +
y'' \\
 +
z''
 +
\end{bmatrix}=
 +
\begin{bmatrix}
 +
0.09156\ cos\ 6^{\circ}+t\ cos\ (6^{\circ} -29.5^{\circ}) \\
 +
0.09156\  sin\ 6^{\circ}+t\ sin\ (6^{\circ}-29.5^{\circ}) \\
 +
0
 +
\end{bmatrix}</math></center>
 +
 +
 
Using the equation for y'' we can solve for t
 
Using the equation for y'' we can solve for t
  

Revision as of 14:33, 28 April 2017

[math]x=-y\ cot\ 29.5^{\circ}+0.09156[/math]

Parameterizing this

[math]r\mapsto {-y\ cot\ 29.5^{\circ}+0.09156,y,0}[/math]


[math]t\mapsto {t\ cos\ 29.5^{\circ}+0.09156,-t\ sin\ 29.5^{\circ},0}[/math]


where the negative sign is applied to the sine function by the even odd relationships of cosine and sine, i.e. ( sin(-t)=-sin(t), cos(-t)=cos(t)) and the fact that the y component is in the 4th quadrant.

[math] \begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\ sin\ 6^{\circ} & cos\ 6^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}[/math]


[math] \begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\ sin\ 6^{\circ} & cos\ 6^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} t\ cos\ 29.5^{\circ}+0.09156 \\ -t\ sin\ 29.5^{\circ} \\ 0 \end{bmatrix}[/math]


[math] \begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} 0.09156\ cos\ 6^{\circ}+t\ cos\ 6^{\circ}cos\ 29.5^{\circ}+t\ sin\ 6^{\circ}sin\ 29.5^{\circ} \\ -t\ cos\ 6^{\circ}sin\ 29.5^{\circ}+0.09156\ sin\ 6^{\circ}+t\ cos\ 29.5^{\circ}sin\ 6^{\circ} \\ 0 \end{bmatrix}[/math]


[math] \begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} 0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}+ sin\ 6^{\circ}sin\ 29.5^{\circ}) \\ 0.09156\ sin\ 6^{\circ}-t\ (cos\ 6^{\circ}sin\ 29.5^{\circ}-sin\ 6^{\circ} cos\ 29.5^{\circ}) \\ 0 \end{bmatrix}[/math]


[math] \begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} 0.09156\ cos\ 6^{\circ}+t\ cos\ (6^{\circ} -29.5^{\circ}) \\ 0.09156\ sin\ 6^{\circ}+t\ sin\ (6^{\circ}-29.5^{\circ}) \\ 0 \end{bmatrix}[/math]


Using the equation for y we can solve for t

[math]y''=0.09156\ sin\ 6^{\circ}-t\ sin\ 23.5^{\circ} \Rightarrow t=\frac{-(y''-0.09156 sin 6^{\circ})}{sin 23.5^{\circ}}[/math]


Substituting this into the expression for x

[math]x''=0.09156\ cos\ 6^{\circ}+t\ cos\ 23.5^{\circ}[/math]


[math]x''=0.09156\ cos\ 6 ^{\circ}+\frac{-(y''-0.09156 sin 6 ^{\circ})}{sin 23.5^{\circ}}(cos 23.5^{\circ})[/math]


[math]x''=0.091058+\frac{y''-.0095706 }{-0.398749} (.917060)[/math]


[math]x''=0.091058+(y''-.0095706 ) (-2.299843)[/math]


[math]x''=-2.299843\ y''+.022011+.091058[/math]


[math]x''=-2.299843\ y''+.113069[/math]