|
|
Line 105: |
Line 105: |
| | | |
| | | |
− | <pre>
| + | [[File:rwall.png]] |
− | rightRotated =
| |
− | ContourPlot[x2 == 1.401949 y + 0.077641, {y, -1, 1}, {x2, 0, 1.8},
| |
− | Frame -> {True, True, False, False},
| |
− | PlotLabel ->
| |
− | "Right side limit of DC as a function of X and Y",
| |
− | FrameLabel -> {"y (meters)", "x (meters)"},
| |
− | ContourStyle -> Black,
| |
− | PlotLegends -> Automatic];
| |
− | </pre>
| |
Revision as of 21:38, 3 May 2017
This same process can be applied to the side walls for the detector. For the sidewalls, we have approximated them as lines following the equation
[math]x=cot\ 29.5^{\circ}\ y + 0.09156[/math]
Parameterizing this
[math]r \mapsto {y\ cot\ 29.5^{\circ} + 0.09156, y, 0}[/math]
[math]t \mapsto {t\ cos\ 29.5^{\circ} + 0.09156, t\ sin\ 29.5^{\circ} , 0}[/math]
[math]\begin{bmatrix}
x'' \\
y'' \\
z''
\end{bmatrix}=
\begin{bmatrix}
cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\
sin\ 6^{\circ} & cos\ 6^{\circ}& 0 \\
0 & 0 & 1
\end{bmatrix}\cdot
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix}[/math]
[math]\begin{bmatrix}
x'' \\
y'' \\
z''
\end{bmatrix}=
\begin{bmatrix}
cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\
sin\ 6^{\circ} & cos\ 6^{\circ}& 0 \\
0 & 0 & 1
\end{bmatrix}\cdot
\begin{bmatrix}
t\ cos\ 29.5^{\circ}+0.09156 \\
t sin 29.5^{\circ}\\
0
\end{bmatrix}[/math]
[math]\begin{bmatrix}
x'' \\
y'' \\
z''
\end{bmatrix}=
\begin{bmatrix}
0.09156\ cos\ 6^{\circ}+t\ cos\ 6 ^{\circ}cos\ 29.5^{\circ}-t\ sin\ 6 ^{\circ}sin\ 29.5^{\circ} \\
t\ cos\ 6 ^{\circ}sin\ 29.5^{\circ}+0.09156\ sin\ 6^{\circ}+t\ cos\ 29.5^{\circ}sin\ 6^{\circ} \\
0
\end{bmatrix}[/math]
[math]\begin{bmatrix}
x'' \\
y'' \\
z''
\end{bmatrix}=
\begin{bmatrix}
0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6 ^{\circ}sin\ 29.5^{\circ}) \\
0.09156\ sin\ 6 ^{\circ}+t\ (sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}) \\
0
\end{bmatrix}[/math]
Using the equation for y we can solve for t
[math]y''=0.09156\ sin\ 6^{\circ}+t (sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}) \Rightarrow t=\frac{y''-0.09156\ sin\ 6 ^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6^{\circ}sin\ 29.5^{\circ}}[/math]
Substituting this into the expression for x
[math]x''=0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ} sin\ 29.5^{\circ})[/math]
[math]x''=0.09156\ cos\ 6 ^{\circ}+\frac{y''-0.09156\ sin\ 6^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6^{\circ}sin\ 29.5^{\circ}} (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ} sin\ 29.5^{\circ})[/math]
[math]x''=0.09156\ cos\ 6^{\circ}+\frac{y''-0.09156\ sin\ 6^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}} (cos\ 6 ^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ}sin\ 29.5^{\circ})[/math]
[math]x''=(0.994522)0.09156+\frac{y''-0.09156 (0.104528) }{0.0909769+.489726} (0.865588- 0.051472)[/math]
[math]x''=(0.091058)+\frac{y''-.0095706 }{0.580703} (.814116)[/math]
[math]x''=(0.091058)+(y''-.0095706 ) (1.401949)[/math]
[math]x''=1.401949\ y''-.013417+.091058[/math]
[math]x''=1.401949\ y''+.077641[/math]