Difference between revisions of "Wire Number Function"

From New IAC Wiki
Jump to navigation Jump to search
Line 59: Line 59:
  
  
<center><math>\frac{x_{n=1}}{sin 4.79^{\circ}}=\frac{2.52934}{sin 110.21^{\circ}} \Rightarrow x_{n=1}=.2252</math></center>
+
<center><math>\frac{x_{n=1}}{sin 5.20988^{\circ}}=\frac{2.52934}{sin 109.79^{\circ}} \Rightarrow x_{n=1}=.2441</math></center>
  
  
Line 66: Line 66:
  
  
<center><math>.2252-.01337=.2117=x_{n=0}</math></center>
+
<center><math>.2441-.01337=.2307=x_{n=0}</math></center>
  
  
 
Each wire becomes an equation of the form,
 
Each wire becomes an equation of the form,
  
<center><math>x_{wire\ n}'=tan(6^{\circ})y'+.2117+.01337\ n</math></center>
+
<center><math>x_{wire\ n}'=tan(6^{\circ})y'+.2307+.01337\ n</math></center>
  
 
This agrees with CED simulation
 
This agrees with CED simulation

Revision as of 15:24, 7 March 2017

Function for the wire number in the detector frame for change in ϕ and constant θ in the lab frame

Using the expression for wire number n in terms of θ for the detector mid-plane where ϕ=0:

n=957.412tan(θ)+2.14437+430.626

We can use the inverse of this function to find the neighboring wire's corresponding angle theta

θ4.49876+0.293001n+0.000679074n23.57132×106n3


θ(n±1)4.49876+0.293001(n±1)+0.000679074(n±1)23.57132×106(n±1)3


We also know what the x' function must follow dependent on phi in the detector plane

x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae


x_1^'=\frac{(r_{D2}^2)-(r_{D1}^2)+cot^2(\theta)(r_{D2}^2-r_{D1}^2)-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae


xD1=rD1 cos(ϕ)yD1=rD1cos(ϕ)zD1=rD1cot(θ)


xD2=rD2cos(ϕ)yD2=rD2sin(ϕ)zD2=rD2cot(θ)


xP=2.53cos(ϕ)(cot(θ)+cos(ϕ)cot(65)


yP=2.53sin(ϕ)(cot(θ)+cos(ϕ)cot(65)


zP=2.53cot(θ)(cot(θ)+cos(ϕ)cot(65)
rD1=RLower Dandelincos(θ)=(aeΔa)tan(65)cos(θ)rD2=RLower Dandelincos(θ)=(ae+Δa)tan(65)cos(θ)

We can take this point to be the x axis intercept and use the fact that each wire is titled by 6 degrees to the horizontal in the plane of the detector to create an equation

xwire n=tan(6)y+xn0

where the initial wire and x' position at the given theta is represented by n0


This equation can be solved for a hypothetical wire 0, which will allow the wire number to be the multiplicative factor for the change from the starting position.


xn=1sin5.20988=2.52934sin109.79xn=1=.2441


Since each wire is separated by .01337 meters


.2441.01337=.2307=xn=0


Each wire becomes an equation of the form,

xwire n=tan(6)y+.2307+.01337 n

This agrees with CED simulation



DC geom.png

^Up

<-Back

Forward->