Difference between revisions of "Determining wire-phi correspondance"

From New IAC Wiki
Jump to navigation Jump to search
Line 3: Line 3:
  
  
 
==Test for <math>\theta=20</math> and <math>\phi=1</math>==
 
All previous quantities where calculated for <math>\theta=20^{\circ}</math> and do not depend on the angle <math>\phi</math>.  The quantities that do change
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>x_{D1}=r_{D1}\ cos(\phi)=.5901cos(1^{\circ}))=.5900\text {m}\qquad y_{D1}=r_{D1}cos(\phi)=.5901 sin(1^{\circ}))=.0103\qquad z_{D1}=r_{D1} cot(\theta)=.5901cot(20)=1.6212\ \text{m}</math>
 
|}
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>x_{D2}=r_{D2} cos(\phi)=1.3055cos(1^{\circ}))=1.3053\text {m}\qquad y_{D2}=r_{D2} sin(\phi)=1.3055sin(1^{\circ}))=.0228\qquad z_{D2}=r_{D2} cot(\theta)=1.3055cot(20)=3.5868\ \text{m}</math>
 
|}
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>x_P=\frac{2.53cos(\phi)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}=\frac{2.53cos(1^{\circ}))}{(cot(20^{\circ})+cos(1^{\circ}))cot(65^{\circ})}=0.7869</math>
 
|}
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>y_P=\frac{2.53sin(\phi)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}=\frac{2.53sin(1^{\circ}))}{(cot(20^{\circ})+cos(1^{\circ}))cot(65^{\circ})}=.0137</math>
 
|}
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>z_P=\frac{2.53cot(\theta)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}=\frac{2.53cot(20^{\circ})}{(cot(20^{\circ})+cos(1^{\circ}))cot(65^{\circ})}=2.1624</math>
 
|}
 
 
 
<center><math>D2P=\sqrt{(x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2}=\sqrt{(1.3053-0.7869)^2+(.0228-.0137)^2+(3.5868-2.1624)^2}=\sqrt{(.5184)^2+(.0091)^2+(1.4244)^2}=1.51582872713\ \text{m}</math></center>
 
 
 
<center><math>D1P=\sqrt{(x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2}=\sqrt{(0.7871-.5900)^2+(.0137-.0103)^2+(2.1624-1.6212)^2}=\sqrt{(.1971)^2+(.0034)^2+(.5412)^2}=.575983862621\ \text{m}</math></center>
 
 
 
 
<center><math>x_1^'=\frac{r_2^{'2}-r_1^{'2}}{4ae}-ae=\frac{1.5158^{'2}-.5758^{'2}}{4(1.0459)(.4497)}-(1.0459)(.4497)=.575\ \text{m}</math></center>
 
 
 
 
Using the pythagorean theorem
 
<center><math>y'=\sqrt{.576^2-.575^2}=.03\ \text{m}</math></center>
 
 
 
The two possible answers denote shifting to the left on right on the y axis.  We take the direction of positive and negative to be the same as the sign convention for the angle phi starting on the x axis and shifting positive clockwise.  A shift of 1 degree in phi at theta equal to 20 degrees only results in a small change in the x and y.  This changes depending on the angles.
 
  
 
=Function for the change in x' in the detector frame for change in <math>\phi</math> and constant <math>\theta</math> in the lab frame=
 
=Function for the change in x' in the detector frame for change in <math>\phi</math> and constant <math>\theta</math> in the lab frame=

Revision as of 03:46, 4 March 2017



Function for the change in x' in the detector frame for change in ϕ and constant θ in the lab frame

D2P=(xD2xP)2+(yD2yP)2+(zD2zP)2


D1P=(xPxD1)2+(yPyD1)2+(zPzD1)2


x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae
xD1=rD1 cos(ϕ)yD1=rD1cos(ϕ)zD1=rD1cot(θ)


xD2=rD2cos(ϕ)yD2=rD2sin(ϕ)zD2=rD2cot(θ)


xP=2.53cos(ϕ)(cot(θ)+cos(ϕ)cot(65)


yP=2.53sin(ϕ)(cot(θ)+cos(ϕ)cot(65)


zP=2.53cot(θ)(cot(θ)+cos(ϕ)cot(65)


x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae


x_1^'=\frac{x_{D2}^2-2x_Px_{D2}+x_P^2+y_{D2}^2-2y_Py_{D2}+y_P^2+z_{D2}^2-2z_Pz_{D2}+z_P^2-x_P^2+2x_Px_{D1}-x_{D1}^2-y_P^2+2y_Py_{D1}-y_{D1}^2-z_P^2+2z_Pz_{D1}-z_{D1}^2}{4ae}-ae


x_1^'=\frac{(x_{D2}^2+y_{D2}^2)-(x_{D1}^2+y_{D1}^2)+z_{D2}^2-z_{D1}^2-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae


x_1^'=\frac{(r_{D2}^2)-(r_{D1}^2)+cot^2(\theta)(r_{D2}^2-r_{D1}^2)-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae


Expressing this as functions of ϕ and non-differentiable constants


x_1^'=\frac{c_1+c_2-2x_P(\phi)x_{D2}(\phi)+2x_P(\phi)x_{D1}(\phi)-2y_P(\phi)y_{D2}(\phi)+2y_P(\phi)y_{D1}(\phi)-2z_P(\phi)c_3}{4c_4}-c_4

Differentiating with respect to ϕ

xD1=rD1cos(ϕ)˙xD1=rD1sin(ϕ)


yD1=rD1sin(ϕ)˙yD1=rD1cos(ϕ)


xD2=rD2cos(ϕ)˙xD2=rD2sin(ϕ)


yD2=rD2sin(ϕ)˙yD2=rD2cos(ϕ)


xP=2.52934271645cos(ϕ)cot(θ)+cos(ϕ)cot(65)˙xP=2.52934271645cot(θ)sin(ϕ)(cos(ϕ)cot(65+cot(θ))2


yP=2.52934271645sin(ϕ)cot(θ)+cos(ϕ)cot(65)˙yP=1.7206+2.52934271645cos(ϕ)cot(θ)(cos(ϕ)cot(65)+cot(θ))2


zP=2.52934271645cot(θ)cot(θ)+cos(ϕ)cot(65)˙zP=1.7206cot(θ)sin(ϕ))(cos(ϕ)cot(65)+cot(θ))2
dx11dϕ=24c4ddϕ(xP(ϕ)xD2(ϕ))+24c4ddϕ(xP(ϕ)xD1(ϕ))24c4ddϕ(yP(ϕ)yD2(ϕ))+24c4ddϕ(yP(ϕ)yD1(ϕ))2c34c4ddϕzP(ϕ)


dx11dϕ=24c4((˙xP(ϕ)xD2(ϕ)+xP(ϕ)˙xD2(ϕ))(˙xP(ϕ)xD1(ϕ)+xP(ϕ)˙xD1(ϕ))+(˙yP(ϕ)yD2(ϕ)+yP(ϕ)˙yD2(ϕ))(˙yP(ϕ)yD1(ϕ)+yP(ϕ)˙yD1(ϕ))+c3˙zP(ϕ))

Function for the wire number in the detector frame for change in ϕ and constant θ in the lab frame

Using the expression for wire number n in terms of θ for the detector mid-plane where ϕ=0:

n=957.412tan(θ)+2.14437+430.626

We can use the inverse of this function to find the neighboring wire's corresponding angle theta

θ4.49876+0.293001n+0.000679074n23.57132×106n3


θ(n±1)4.49876+0.293001(n±1)+0.000679074(n±1)23.57132×106(n±1)3


We also know what the x' function must follow dependent on phi in the detector plane

x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae


x_1^'=\frac{(r_{D2}^2)-(r_{D1}^2)+cot^2(\theta)(r_{D2}^2-r_{D1}^2)-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae


xD1=rD1 cos(ϕ)yD1=rD1cos(ϕ)zD1=rD1cot(θ)


xD2=rD2cos(ϕ)yD2=rD2sin(ϕ)zD2=rD2cot(θ)


xP=2.53cos(ϕ)(cot(θ)+cos(ϕ)cot(65)


yP=2.53sin(ϕ)(cot(θ)+cos(ϕ)cot(65)


zP=2.53cot(θ)(cot(θ)+cos(ϕ)cot(65)
rD1=RLower Dandelincos(θ)=(aeΔa)tan(65)cos(θ)rD2=RLower Dandelincos(θ)=(ae+Δa)tan(65)cos(θ)

We can take this point to be the x axis intercept and use the fact that each wire is titled by 6 degrees to the horizontal in the plane of the detector to create an equation

xwire n=tan(6)y+xn0

where the initial wire and x' position at the given theta is represented by n0


This equation can be solved for a hypothetical wire 0, which will allow the wire number to be the multiplicative factor for the change from the starting position.


xn=1sin4.79=2.52934sin110.21xn=1=.2252


Since each wire is separated by .01337 meters


.2252.01337=.2117=xn=0


Each wire becomes an equation of the form,

xwire n=tan(6)y+.2117+.01337 n

This agrees with CED simulation



DC geom.png

Setting up Mathematica for DC Theta-Phi Isotropic Cone

File:FirstPass.pdf


File:SecondPass.pdf