|
|
Line 3: |
Line 3: |
| | | |
| | | |
− |
| |
− | ==Test for <math>\theta=20</math> and <math>\phi=1</math>==
| |
− | All previous quantities where calculated for <math>\theta=20^{\circ}</math> and do not depend on the angle <math>\phi</math>. The quantities that do change
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_{D1}=r_{D1}\ cos(\phi)=.5901cos(1^{\circ}))=.5900\text {m}\qquad y_{D1}=r_{D1}cos(\phi)=.5901 sin(1^{\circ}))=.0103\qquad z_{D1}=r_{D1} cot(\theta)=.5901cot(20)=1.6212\ \text{m}</math>
| |
− | |}
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_{D2}=r_{D2} cos(\phi)=1.3055cos(1^{\circ}))=1.3053\text {m}\qquad y_{D2}=r_{D2} sin(\phi)=1.3055sin(1^{\circ}))=.0228\qquad z_{D2}=r_{D2} cot(\theta)=1.3055cot(20)=3.5868\ \text{m}</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_P=\frac{2.53cos(\phi)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}=\frac{2.53cos(1^{\circ}))}{(cot(20^{\circ})+cos(1^{\circ}))cot(65^{\circ})}=0.7869</math>
| |
− | |}
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>y_P=\frac{2.53sin(\phi)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}=\frac{2.53sin(1^{\circ}))}{(cot(20^{\circ})+cos(1^{\circ}))cot(65^{\circ})}=.0137</math>
| |
− | |}
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>z_P=\frac{2.53cot(\theta)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}=\frac{2.53cot(20^{\circ})}{(cot(20^{\circ})+cos(1^{\circ}))cot(65^{\circ})}=2.1624</math>
| |
− | |}
| |
− |
| |
− |
| |
− | <center><math>D2P=\sqrt{(x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2}=\sqrt{(1.3053-0.7869)^2+(.0228-.0137)^2+(3.5868-2.1624)^2}=\sqrt{(.5184)^2+(.0091)^2+(1.4244)^2}=1.51582872713\ \text{m}</math></center>
| |
− |
| |
− |
| |
− | <center><math>D1P=\sqrt{(x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2}=\sqrt{(0.7871-.5900)^2+(.0137-.0103)^2+(2.1624-1.6212)^2}=\sqrt{(.1971)^2+(.0034)^2+(.5412)^2}=.575983862621\ \text{m}</math></center>
| |
− |
| |
− |
| |
− |
| |
− | <center><math>x_1^'=\frac{r_2^{'2}-r_1^{'2}}{4ae}-ae=\frac{1.5158^{'2}-.5758^{'2}}{4(1.0459)(.4497)}-(1.0459)(.4497)=.575\ \text{m}</math></center>
| |
− |
| |
− |
| |
− |
| |
− | Using the pythagorean theorem
| |
− | <center><math>y'=\sqrt{.576^2-.575^2}=.03\ \text{m}</math></center>
| |
− |
| |
− |
| |
− | The two possible answers denote shifting to the left on right on the y axis. We take the direction of positive and negative to be the same as the sign convention for the angle phi starting on the x axis and shifting positive clockwise. A shift of 1 degree in phi at theta equal to 20 degrees only results in a small change in the x and y. This changes depending on the angles.
| |
| | | |
| =Function for the change in x' in the detector frame for change in <math>\phi</math> and constant <math>\theta</math> in the lab frame= | | =Function for the change in x' in the detector frame for change in <math>\phi</math> and constant <math>\theta</math> in the lab frame= |
Revision as of 03:46, 4 March 2017
Function for the change in x' in the detector frame for change in ϕ and constant θ in the lab frame
D2P=√(xD2−xP)2+(yD2−yP)2+(zD2−zP)2
D1P=√(xP−xD1)2+(yP−yD1)2+(zP−zD1)2
x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae
xD1=rD1 cos(ϕ)yD1=rD1cos(ϕ)zD1=rD1cot(θ)
|
xD2=rD2cos(ϕ)yD2=rD2sin(ϕ)zD2=rD2cot(θ)
|
xP=2.53cos(ϕ)(cot(θ)+cos(ϕ)cot(65∘)
|
yP=2.53sin(ϕ)(cot(θ)+cos(ϕ)cot(65∘)
|
zP=2.53cot(θ)(cot(θ)+cos(ϕ)cot(65∘)
|
x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae
x_1^'=\frac{x_{D2}^2-2x_Px_{D2}+x_P^2+y_{D2}^2-2y_Py_{D2}+y_P^2+z_{D2}^2-2z_Pz_{D2}+z_P^2-x_P^2+2x_Px_{D1}-x_{D1}^2-y_P^2+2y_Py_{D1}-y_{D1}^2-z_P^2+2z_Pz_{D1}-z_{D1}^2}{4ae}-ae
x_1^'=\frac{(x_{D2}^2+y_{D2}^2)-(x_{D1}^2+y_{D1}^2)+z_{D2}^2-z_{D1}^2-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae
x_1^'=\frac{(r_{D2}^2)-(r_{D1}^2)+cot^2(\theta)(r_{D2}^2-r_{D1}^2)-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae
Expressing this as functions of ϕ and non-differentiable constants
x_1^'=\frac{c_1+c_2-2x_P(\phi)x_{D2}(\phi)+2x_P(\phi)x_{D1}(\phi)-2y_P(\phi)y_{D2}(\phi)+2y_P(\phi)y_{D1}(\phi)-2z_P(\phi)c_3}{4c_4}-c_4
Differentiating with respect to ϕ
xD1=rD1cos(ϕ)⇒˙xD1=−rD1sin(ϕ)
|
yD1=rD1sin(ϕ)⇒˙yD1=rD1cos(ϕ)
|
xD2=rD2cos(ϕ)⇒˙xD2=−rD2sin(ϕ)
|
yD2=rD2sin(ϕ)⇒˙yD2=rD2cos(ϕ)
|
xP=2.52934271645cos(ϕ)cot(θ)+cos(ϕ)cot(65∘)⇒˙xP=−2.52934271645cot(θ)sin(ϕ)(cos(ϕ)cot(65∘+cot(θ))2
|
yP=2.52934271645sin(ϕ)cot(θ)+cos(ϕ)cot(65∘)⇒˙yP=−1.7206+2.52934271645cos(ϕ)cot(θ)(cos(ϕ)cot(65∘)+cot(θ))2
|
zP=2.52934271645cot(θ)cot(θ)+cos(ϕ)cot(65∘)⇒˙zP=−1.7206cot(θ)sin(ϕ))(cos(ϕ)cot(65)+cot(θ))2
|
dx11dϕ=−24c4ddϕ(xP(ϕ)xD2(ϕ))+24c4ddϕ(xP(ϕ)xD1(ϕ))−24c4ddϕ(yP(ϕ)yD2(ϕ))+24c4ddϕ(yP(ϕ)yD1(ϕ))−2c34c4ddϕzP(ϕ)
dx11dϕ=−24c4((˙xP(ϕ)xD2(ϕ)+xP(ϕ)˙xD2(ϕ))−(˙xP(ϕ)xD1(ϕ)+xP(ϕ)˙xD1(ϕ))+(˙yP(ϕ)yD2(ϕ)+yP(ϕ)˙yD2(ϕ))−(˙yP(ϕ)yD1(ϕ)+yP(ϕ)˙yD1(ϕ))+c3˙zP(ϕ))
Function for the wire number in the detector frame for change in ϕ and constant θ in the lab frame
Using the expression for wire number n in terms of θ for the detector mid-plane where ϕ=0:
n=−957.412tan(θ)+2.14437+430.626
We can use the inverse of this function to find the neighboring wire's corresponding angle theta
θ≡4.49876+0.293001n+0.000679074n2−3.57132×10−6n3
θ(n±1)≡4.49876+0.293001(n±1)+0.000679074(n±1)2−3.57132×10−6(n±1)3
We also know what the x' function must follow dependent on phi in the detector plane
x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae
x_1^'=\frac{(r_{D2}^2)-(r_{D1}^2)+cot^2(\theta)(r_{D2}^2-r_{D1}^2)-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae
xD1=rD1 cos(ϕ)yD1=rD1cos(ϕ)zD1=rD1cot(θ)
|
xD2=rD2cos(ϕ)yD2=rD2sin(ϕ)zD2=rD2cot(θ)
|
xP=2.53cos(ϕ)(cot(θ)+cos(ϕ)cot(65∘)
|
yP=2.53sin(ϕ)(cot(θ)+cos(ϕ)cot(65∘)
|
zP=2.53cot(θ)(cot(θ)+cos(ϕ)cot(65∘)
|
rD1=RLower Dandelincos(θ)=(ae−Δa)tan(65∘)cos(θ)rD2=RLower Dandelincos(θ)=(ae+Δa)tan(65∘)cos(θ)
We can take this point to be the x axis intercept and use the fact that each wire is titled by 6 degrees to the horizontal in the plane of the detector to create an equation
x′wire n=tan(6∘)y′+xn0
where the initial wire and x' position at the given theta is represented by n0
This equation can be solved for a hypothetical wire 0, which will allow the wire number to be the multiplicative factor for the change from the starting position.
xn=1sin4.79∘=2.52934sin110.21∘⇒xn=1=.2252
Since each wire is separated by .01337 meters
.2252−.01337=.2117=xn=0
Each wire becomes an equation of the form,
x′wire n=tan(6∘)y′+.2117+.01337 n
This agrees with CED simulation
Setting up Mathematica for DC Theta-Phi Isotropic Cone
File:FirstPass.pdf
File:SecondPass.pdf