Difference between revisions of "Wire angle correspondance"

From New IAC Wiki
Jump to navigation Jump to search
Line 114: Line 114:
  
 
==Super Layer 1:Layer 6==
 
==Super Layer 1:Layer 6==
For a hit at layer 2, wire 1 we find the corresponding angle theta in the lab frame to be 5.30 degrees
+
For a hit at layer 6, wire 1 we find the corresponding angle theta in the lab frame to be 5.30 degrees
 
<center>[[File:Superlayer1_layer6_wire1.png]]</center>
 
<center>[[File:Superlayer1_layer6_wire1.png]]</center>
  
  
Examing a hit at layer 2, wire 112 we find the corresponding angle theta in the lab frame to be 40.61 degrees
+
Examing a hit at layer 6, wire 112 we find the corresponding angle theta in the lab frame to be 40.61 degrees
 
<center>[[File:Superlayer1_layer6_wire112.png]]</center>
 
<center>[[File:Superlayer1_layer6_wire112.png]]</center>
  

Revision as of 21:09, 16 November 2016

Determining wire-theta correspondance

To associate the hits with the Moller scattering angle theta, the occupancy plots of the drift chamber hits by means of wire numbers and layer must be translated using the physical constraints of the detector. Using the data released for the DC:

DC: Drift Chambers(specs)


This gives the detector with a working range of 5 to 40 degrees in Theta for the lab frame, with a resolution of 1m radian.

This sets the lower limit:

51π radians180=.0872664626 radians


This sets the upper limit:

401π radians180=.698131700798 radians

Taking the difference,

.698131700798.0872664626 .61086523198 radians


Dividing by 112, we find

.61086523198112=.005454153912 radians 0.0055 radians

CED Verification

Using CED to verify the angle and wire correlation,

Super Layer 1:Layer 1

For a hit at layer 1, wire 1 we find the corresponding angle theta in the lab frame to be 4.91 degrees

Layer1Wire1Hit.png


For a hit at layer 1, wire 2 we find the corresponding angle theta in the lab frame to be 5.19 degrees

Layer1Wire2.png


Finding the difference between the two wires,

5.194.91=.28π radians180=0.004886921906 0.00489 radians

Examing a hit at layer 1, wire 112 we find the corresponding angle theta in the lab frame to be 40.70 degrees

Layer1Wire112.png

This sets the lower limit:

4.911π radians180=.085695666273 radians0.0857 radians


This sets the upper limit:

40.701π radians180=.710349005562 radians0.710 radians

Taking the difference,

.710349005562.085695666273 .625 radians


Dividing by 112, we find

.624653339289112=.005577261958 radians 0.00558 radians

Noting the difference from the spacing for a single cell, to the entire detector layer

0.004890.00558=0.00069 .001 radians

An uncertainty of this magnitude in radians corresponds to an angular uncertainty of

.001 radian 180π radians.0573

Testing this for a random angle, 78 degrees we find

0.00558×78 =0.43524 radians180π radians24.94

Adding this to the starting angle of 4.91 degrees

4.91+24.94=29.85±.0573

Comparing this to CED at wire 78

Layer1Wire78.png


29.85±.057329.88

Super Layer 1:Layer 2

For a hit at layer 2, wire 1 we find the corresponding angle theta in the lab frame to be 5.00 degrees

Superlayer1 layer2 wire1.png


Examing a hit at layer 2, wire 112 we find the corresponding angle theta in the lab frame to be 41.05 degrees

Superlayer1 layer2 wire112.png


This sets the lower limit:

5.001π radians180=.0872664626 radians0.0873 radians


This sets the upper limit:

40.701π radians180=.716457657944 radians0.716 radians

Taking the difference,

.716457657944..0872664626 .629 radians


Dividing by 112, we find

.629191195344112=.00561777853 radians 0.00562 radians

Super Layer 1:Layer 6

For a hit at layer 6, wire 1 we find the corresponding angle theta in the lab frame to be 5.30 degrees

Superlayer1 layer6 wire1.png


Examing a hit at layer 6, wire 112 we find the corresponding angle theta in the lab frame to be 40.61 degrees

Superlayer1 layer6 wire112.png


This sets the lower limit:

5.301π radians180=.09250245 radians0.025 radians


This sets the upper limit:

40.611π radians180=.7087782 radians0.709 radians

Taking the difference,

.716457657944.0872664626 .616 radians


Dividing by 112, we find

.61627575112=.00550246 radians 0.00550 radians

Superlayer 2:Layer 1

Superlayer2 layer1 wire1.png



Superlayer2 layer1 wire112.png