Difference between revisions of "Uniform distribution in Energy and Theta LUND files"

From New IAC Wiki
Jump to navigation Jump to search
Line 72: Line 72:
  
 
==Using Initial Condition based on After Collision in CM Frame==
 
==Using Initial Condition based on After Collision in CM Frame==
The energy and total momentum of the Moller and scattered electron remain the same under a rotation in any frame of reference.  After the collision, these quantities remain the same, but the x, y, z components change.  Since only the z component is affected by the Lorentz transformation, we know that the x and y components will remain the same in both the lab frame and Center of Mass frame.
+
The energy and total momentum of the Moller and scattered electron remain the same under a rotation in any frame of reference.  After the collision, these quantities remain the same, but the x, y, z components change.   
  
<center><math>P_x=P_x^*</math></center>
+
In this frame, we can cycle through values of theta from 90 to 180 degrees which physically correspond to a stationary electron being impinged by an electron. 
  
<center><math>P_y=P_y^*</math></center>
+
<center>[[File:xz_lab.png | 400 px]]</center>
 +
<center>'''Figure 3: Definition of Moller electron variables in the CM Frame in the x-z plane.'''</center>
  
 +
<center>Using <math>\theta '_2=\arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)</math></center>
  
We can determine the z component with
 
  
<center><math>P_z^*=\sqrt{P^{*2}-P_x^{*2}-P_y^{*2}}=\pm 53.006 MeV/c</math></center>
+
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>\Longrightarrow {p^'_{2(z)}=p^'_{2}\cos(\theta '_2)}</math>
 +
|}
  
  
[[File:MolThetaCMweightedTheory.png]]
+
 
 +
 
 +
Checking on the sign resulting from the cosine function, we are limited to:
 +
 
 +
{| class="wikitable" align="center"
 +
| style="background: red"      | <math>0^\circ \le \theta '_2 \le 60^\circ \equiv 0 \le \theta '_2 \le 1.046\ Radians</math>
 +
|}
 +
 
 +
Since,
 +
<center><math>\frac{p^'_{2(z)}}{p^'_{2}}=cos(\theta '_2)</math></center>
 +
 
 +
 
 +
<center><math>\Longrightarrow p^'_{2(z)}\ should\ always\ be\ positive</math></center>

Revision as of 18:28, 25 May 2016

File:LUND Spread.C

The LUND file is created by creating an isotropic distribution of particles within the Moller Center of Mass frame of reference. These particles are also uniformly distributed through the angle theta with respect to the beam line in the range 5-40 degrees. This is done at a set angle phi (10 degrees) with respect to the perpendicular components with respect to the beam line.

MolThetaCM spread.pngMolMomCM spread.png


Center of Mass for Stationary Target

For an incoming electron of 11GeV striking a stationary electron we would expect:

Screen Shot 2016-05-12 at 6.42.46 PM.png


Boosting to the Center of Mass Frame:

Screen Shot 2016-05-12 at 6.44.44 PM.png

Init e Mom CM.pngInit Mol Mom CM.png


Init e Theta CM.pngInit Mol Theta CM.png

Phase space Limiting Particles

Since the angle phi has been constrained to remain constant, the x and y components of the momentum will increase in the positive first quadrant. This implies that the z component of the momentum must decrease by the relation:

[math]p^2=p_x^2+p_y^2+p_z^2[/math]

In the Center of Mass frame, this becomes:

[math]p_x^{*2}+p_y^{*2} = p^{*2}-p_z^{*2}[/math]


Since the momentum in the CM frame is a constant, this implies that pz must decrease. For phi=10 degrees:

MolPxPyLab.pngMolPxPyCM.png

This is repeated for rotations of 60 degrees in phi in the Lab frame.


We can use the variable rapidity:

[math]y \equiv \frac {1}{2} \ln \left(\frac{E+p_z}{E-p_z}\right)[/math]

where

[math] P^+ \equiv E+p_z[/math]
[math] P^- \equiv E-p_z[/math]

this implies that as

[math]p_z \rightarrow 0 \Rrightarrow \frac{E+p_z}{E-p_z} \rightarrow 1 \Rrightarrow \ln 1 \rightarrow 0 \Rrightarrow y=0[/math]


For forward travel in the light cone:

[math]p_z \rightarrow E \Rrightarrow \frac{E+p_z}{E-p_z} \rightarrow \infin \Rrightarrow \ln \infin \rightarrow \infin \Rrightarrow y \rightarrow \infin [/math]


For backward travel in the light cone:

[math]p_z \rightarrow -E \Rrightarrow \frac{E+p_z}{E-p_z} \rightarrow 0 \Rrightarrow \ln 0 \rightarrow -\infin \Rrightarrow y \rightarrow -\infin [/math]


For a particle that transforms from the Lab frame to the CM frame where the particle is not within the light cone:

[math]p_x^2+p_y^2=52.589054^2+9.272868^2=53.400MeV \gt 53.015 MeV (E) \therefore p_z \rightarrow imaginary[/math]

These particles are outside the light cone and are more timelike, thus not visible in normal space. This will reduce the number of particles that will be detected.

MolEThetaRapidityCM.png

Using Initial Condition based on After Collision in CM Frame

The energy and total momentum of the Moller and scattered electron remain the same under a rotation in any frame of reference. After the collision, these quantities remain the same, but the x, y, z components change.

In this frame, we can cycle through values of theta from 90 to 180 degrees which physically correspond to a stationary electron being impinged by an electron.

Xz lab.png
Figure 3: Definition of Moller electron variables in the CM Frame in the x-z plane.
Using [math]\theta '_2=\arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)[/math]


[math]\Longrightarrow {p^'_{2(z)}=p^'_{2}\cos(\theta '_2)}[/math]



Checking on the sign resulting from the cosine function, we are limited to:

[math]0^\circ \le \theta '_2 \le 60^\circ \equiv 0 \le \theta '_2 \le 1.046\ Radians[/math]

Since,

[math]\frac{p^'_{2(z)}}{p^'_{2}}=cos(\theta '_2)[/math]


[math]\Longrightarrow p^'_{2(z)}\ should\ always\ be\ positive[/math]