Difference between revisions of "Niowave 10-2015"
Line 1: | Line 1: | ||
Niowave Positron Project Progress for October 2015 | Niowave Positron Project Progress for October 2015 | ||
− | A comparison was made between MCNPX and GEANT4 using a cylindrical electron beam with a radius of 1 cm. The 10 MeV incident electrons impinged a 2 mm thick PbBi target. | + | A comparison was made between MCNPX and GEANT4 using a cylindrical electron beam with a radius of 1 cm. The 10 MeV incident electrons impinged a 2 mm thick PbBi target. As observed previously, the |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Incident Electron spatial distribution and energy | Incident Electron spatial distribution and energy |
Revision as of 14:42, 13 April 2016
Niowave Positron Project Progress for October 2015
A comparison was made between MCNPX and GEANT4 using a cylindrical electron beam with a radius of 1 cm. The 10 MeV incident electrons impinged a 2 mm thick PbBi target. As observed previously, the
Incident Electron spatial distribution and energy
Positron and Electron Momentum after the converter
PbBi Thickness (mm) | #positrons/million electrons (G4Beamline) | #positrons/million electrons (MCNPX) |
1 | 1169,1083,1068,1090,1088 =1100 | 401091 |
1.5 | 1723, 1668,1671, 1687,1726=1695 | 281728 |
2 | 1902,1921,1886,1967,1922=1920 | 301984 |
3 | 1920,1880,1883,1864,1857=1881 | 241986 |
4 | 1688, 1766, 1712, 1709, 1753=1726 | 331858 |
5 | 1569,1585,1509 ,1536,1551=1550 | 291646 |
7 | 1475,1450,1457,1428,1477 =1457 | 201541 |
10 | 1250,1180,1178,1186,1166=1192 | 331216 |
Dmitry's processing of Tony's GEANT simulations showing transverse phase space portrait (left) and longitudinal phase space portrait (right). Phase space portraits show coordinate x or y vs diveregense=px/pz or py/pz (or time vs kinetic energy ). Captions show:
1. geometric (not normalized) emittance for transverse and emittance for longitudinal phase space portraits (ellipse areas divided by "pi")
2. Twiss parameters
3. Ellipse centroid for longitudinal phase portrait
4. sqrt(beta*emittance) and sqrt(gamma*emittance) - half sizes of the projections of the ellipses on the coordinate and divergence axes respectively.
Electrons - RMS
Electrons - 68.2% core
Positrons - RMS
Positrons - 68.2% core
The plot below shows the energy deposited in MeV along the pipe. The Z axis is along the beam direction. The distance around the beam pipe is determine by taking the pipe radius (34.8 mm) and multiplying it by the Phi angle around the pipe. The bins are 1cm x 1cm.
Below is energy deposited contributions from from photons(AVSzWg), positrons (AVSzWpos), and electrons.
Why is the positron hotspot upstream of the target? Because beam was going from right to left.
root commands used
TH2D *AVSz=new TH2D("AVSz","AVSz",100,-1000,0,12,-60,60) BeamPipeE->Draw("35.*atan(PosYmm/PosXmm):PosZmm>>AVSz","DepEmeV"); AVSz->Draw("colz");
I was unable to do anything other than a gaussian beam right now, I will try to do one later
For now I have a gaussian with an 8mm RMS and 10 MeV incident electrons as shown below.
The positron and electron momentum distributions after the PbBi converter are shown below
A comma delimited text file with the above events in the format of
x,y,z,Px,Py,Pz
in units of cm for distance and MeV for momentum is located at
for positrons
http://www2.cose.isu.edu/~foretony/Positrons_2mm10MeV.dat
and
http://www2.cose.isu.edu/~foretony/Electrons_2mm10MeV.dat
for electrons
For now I have a gaussian with an 1mm RMS and 10 MeV incident electrons as shown below.
The positron and electron momentum distributions after the PbBi converter are shown below
A comma delimited text file with the above events in the format of
x,y,z,Px,Py,Pz
in units of cm for distance and MeV for momentum is located at
for positrons
http://www2.cose.isu.edu/~foretony/Positrons_2mm10MeVDelta.dat
and
http://www2.cose.isu.edu/~foretony/Electrons_2mm10MeVDelta.dat
for electrons
Dmitry's processing of Tony's GEANT simulations showing transverse phase space portrait (left) and longitudinal phase space portrait (right). Phase space portraits show coordinate x or y vs
diveregense=px/pz or py/pz (or time vs kinetic energy ). Captions show:
1. geometric (not normalized) emittance for transverse and emittance for longitudinal phase space portraits (ellipse areas divided by "pi")
2. Twiss parameters
3. Ellipse centroid for longitudinal phase portrait
4. sqrt(beta*emittance) and sqrt(gamma*emittance) - half sizes of the projections of the ellipses on the coordinate and divergence axes respectively.
Electrons - RMS
Electrons - 68.2% core
Positrons - RMS
Positrons - 68.2% core