Difference between revisions of "Variables Used in Elastic Scattering"
Jump to navigation
Jump to search
where
represents the 4-Momentum Vector in the CM frame and
represents the 4-Momentum Vector in the initial Lab frame
where
represents the 4-Momentum Vector in the final Lab frameand
represents the 4-Momentum Vector in the final CM frame
Line 31: | Line 31: | ||
==New 4-Momentum Quantities== | ==New 4-Momentum Quantities== | ||
− | Working in just the | + | Working in just the CM frame, we can form new 4-Momentum Vectors comprised of 4-Momenta in this frame, with |
− | <center><math>{\mathbf P_1}- {\mathbf P_1^'}= \left( \begin{matrix}E_1-E_1'\\ p_{1(x)}-p_{1(x)}^' \\ p_{1(y)}-p_{1(y)}^' \\ p_{1(z)}-p_{1(z)}^'\end{matrix} \right)={\mathbf P_a}</math></center> | + | <center><math>{\mathbf P_1^*}- {\mathbf P_1^{'*}}= \left( \begin{matrix}E_1^*-E_1^{'*}\\ p_{1(x)}^*-p_{1(x)}^{'*} \\ p_{1(y)}^*-p_{1(y)}^{'*} \\ p_{1(z)}^*-p_{1(z)}^{'*}\end{matrix} \right)={\mathbf P_a^*}</math></center> |
− | <center><math>{\mathbf P_1}- {\mathbf P_2^'}= \left( \begin{matrix}E_1-E_2'\\ p_{1(x)}-p_{2(x)}^' \\ p_{1(y)}-p_{2(y)}^' \\ p_{1(z)}-p_{2(z)}^'\end{matrix} \right)={\mathbf P_b}</math></center> | + | <center><math>{\mathbf P_1^*}- {\mathbf P_2^{'*}}= \left( \begin{matrix}E_1^*-E_2^{'*}\\ p_{1(x)}^*-p_{2(x)}^{'*} \\ p_{1(y)}^*-p_{2(y)}^{'*} \\ p_{1(z)}^*-p_{2(z)}^{'*}\end{matrix} \right)={\mathbf P_b^*}</math></center> |
− | <center><math>{\mathbf P_2}- {\mathbf P_1^'}= \left( \begin{matrix}E_2-E_1'\\ p_{2(x)}-p_{1(x)}^' \\ p_{2(y)}-p_{1(y)}^' \\ p_{2(z)}-p_{1(z)}^'\end{matrix} \right)={\mathbf P_c}</math></center> | + | <center><math>{\mathbf P_2^*}- {\mathbf P_1^{'*}}= \left( \begin{matrix}E_2^*-E_1{'*}\\ p_{2(x)}^*-p_{1(x)}^{'*} \\ p_{2(y)}^*-p_{1(y)}^{'*} \\ p_{2(z)}^*-p_{1(z)}^{'*}\end{matrix} \right)={\mathbf P_c^*}</math></center> |
− | <center><math>{\mathbf P_2}- {\mathbf P_2^'}= \left( \begin{matrix}E_2-E_2'\\ p_{2(x)}-p_{2(x)}^' \\ p_{2(y)}-p_{2(y)}^' \\ p_{2(z)}-p_{2(z)}^'\end{matrix} \right)={\mathbf P_d}</math></center> | + | <center><math>{\mathbf P_2^*}- {\mathbf P_2^{'*}}= \left( \begin{matrix}E_2^*-E_2^{'*}\\ p_{2(x)}^*-p_{2(x)}^{'*} \\ p_{2(y)}^*-p_{2(y)}^{'*} \\ p_{2(z)}^*-p_{2(z)}^{'*}\end{matrix} \right)={\mathbf P_d^*}</math></center> |
Using the algebraic fact | Using the algebraic fact |
Revision as of 23:25, 31 January 2016
Lorentz Invariant Quantities
Total 4-Momentums
As was shown earlier the scalar product of a 4-Momentum vector with itself ,
,
and the length of a 4-Momentum vector composed of 4-Momentum vectors,
,
are invariant quantities.
It was further shown that
which can be expanded to
New 4-Momentum Quantities
Working in just the CM frame, we can form new 4-Momentum Vectors comprised of 4-Momenta in this frame, with
Using the algebraic fact
and the fact that the length of these 4-Momentum Vectors are invariant,
Using the fact that the scalar product of a 4-momenta with itself is invariant,
We can simiplify the expressions
Finding the cross terms,
This gives
Using the fact that energy is conserved in this elastic collision