|
|
Line 100: |
Line 100: |
| Using the relativistic expression for total energy | | Using the relativistic expression for total energy |
| | | |
− | <center><math>E=\sqrt{p^2+m^2\right)}</math></center> | + | <center><math>E=\sqrt{p^2+m^2\right)}<\math><\center> |
| | | |
| | | |
Revision as of 21:59, 31 January 2016
Lorentz Invariant Quantities
Total 4-Momentums
As was shown earlier the scalar product of a 4-Momentum vector with itself ,
P1⋅P1=E1E1−→p1⋅→p1=m21=s ,
and the length of a 4-Momentum vector composed of 4-Momentum vectors,
P2=(P1+P2)2=(E1+E2)2−(→p1+→p2)2=(m1+m2)2=s,
are invariant quantities.
It was further shown that
P∗2=P2
where P∗=(P∗1+P∗2)2 represents the 4-Momentum Vector in the CM frame
and P=(P1+P2)2 represents the 4-Momentum Vector in the initial Lab frame
which can be expanded to
{\mathbf P^*}^2={\mathbf P}^2={\mathbf P^'}^2
where {\mathbf P^'}=({\mathbf P_1^'}+{\mathbf P_2^'})^2 represents the 4-Momentum Vector in the final Lab frame
New 4-Momentum Quantities
Working in just the Lab frame, we can form new 4-Momentum Vectors comprised of 4-Momenta in this frame, with
{\mathbf P_1}- {\mathbf P_1^'}= \left( \begin{matrix}E_1-E_1'\\ p_{1(x)}-p_{1(x)}^' \\ p_{1(y)}-p_{1(y)}^' \\ p_{1(z)}-p_{1(z)}^'\end{matrix} \right)={\mathbf P_a}
{\mathbf P_1}- {\mathbf P_2^'}= \left( \begin{matrix}E_1-E_2'\\ p_{1(x)}-p_{2(x)}^' \\ p_{1(y)}-p_{2(y)}^' \\ p_{1(z)}-p_{2(z)}^'\end{matrix} \right)={\mathbf P_b}
{\mathbf P_2}- {\mathbf P_1^'}= \left( \begin{matrix}E_2-E_1'\\ p_{2(x)}-p_{1(x)}^' \\ p_{2(y)}-p_{1(y)}^' \\ p_{2(z)}-p_{1(z)}^'\end{matrix} \right)={\mathbf P_c}
{\mathbf P_2}- {\mathbf P_2^'}= \left( \begin{matrix}E_2-E_2'\\ p_{2(x)}-p_{2(x)}^' \\ p_{2(y)}-p_{2(y)}^' \\ p_{2(z)}-p_{2(z)}^'\end{matrix} \right)={\mathbf P_d}
Using the algebraic fact
(a−b)2=(b−a)2
and the fact that the length of these 4-Momentum Vectors are invariant,
\left({\mathbf P_1}- {\mathbf P_1^'}\right)^2=\left({\mathbf P_1}^2-2{\mathbf P_1}\cdot {\mathbf P_1^'}+ {\mathbf P_1^'}\right)= \left( \begin{matrix}E_1-E_1'\\ p_{1(x)}-p_{1(x)}^' \\ p_{1(y)}-p_{1(y)}^' \\ p_{1(z)}-p_{1(z)}^'\end{matrix} \right)^2=\left({\mathbf P_a}\right)^2=s
\left({\mathbf P_1}- {\mathbf P_2^'}\right)^2=\left({\mathbf P_1}^2-2{\mathbf P_1}\cdot {\mathbf P_2^'}+ {\mathbf P_2^'}\right)= \left( \begin{matrix}E_1-E_2'\\ p_{1(x)}-p_{2(x)}^' \\ p_{1(y)}-p_{2(y)}^' \\ p_{1(z)}-p_{2(z)}^'\end{matrix} \right)^2=\left({\mathbf P_b}\right)^2=s
\left({\mathbf P_2}- {\mathbf P_1^'}\right)^2=\left({\mathbf P_2}^2-2{\mathbf P_2}\cdot {\mathbf P_1^'}+ {\mathbf P_1^'}\right)= \left( \begin{matrix}E_2-E_1'\\ p_{2(x)}-p_{1(x)}^' \\ p_{2(y)}-p_{1(y)}^' \\ p_{2(z)}-p_{1(z)}^'\end{matrix} \right)^2=\left({\mathbf P_c}\right)^2=s
\left({\mathbf P_2}- {\mathbf P_2^'}\right)^2=\left({\mathbf P_2}^2-2{\mathbf P_2}\cdot {\mathbf P_2^'}+ {\mathbf P_2^'}\right)= \left( \begin{matrix}E_2-E_2'\\ p_{2(x)}-p_{2(x)}^' \\ p_{2(y)}-p_{2(y)}^' \\ p_{2(z)}-p_{2(z)}^'\end{matrix} \right)^2=\left({\mathbf P_d}\right)^2=s
Using the fact that the scalar product of a 4-momenta with itself is invariant,
P1⋅P1=E1E1−→p1⋅→p1=m21=s
We can simiplify the expressions
\left({\mathbf P_1}- {\mathbf P_1^'}\right)^2=\left( m_1^2-2{\mathbf P_1}\cdot {\mathbf P_1^'}+ m_1^{'2}\right)=\left({\mathbf P_a}\right)^2=s
\left({\mathbf P_1}- {\mathbf P_2^'}\right)^2=\left( m_1^2-2{\mathbf P_1}\cdot {\mathbf P_2^'}+ m_2^{'2}\right)=\left({\mathbf P_b}\right)^2=s
\left({\mathbf P_2}- {\mathbf P_1^'}\right)^2=\left( m_2^2-2{\mathbf P_2}\cdot {\mathbf P_1^'}+ m_1^{'2}\right)=\left({\mathbf P_c}\right)^2=s
\left({\mathbf P_2}- {\mathbf P_2^'}\right)^2=\left( m_2^2-2{\mathbf P_2}\cdot {\mathbf P_2^'}+ m_2^{'2}\right)=\left({\mathbf P_d}\right)^2=s
Finding the cross terms,
{\mathbf P_1}\cdot {\mathbf P^'}=\left(\begin{matrix} E\\ p_x \\ p_y \\ p_z \end{matrix} \right)\cdot \left( \begin{matrix}1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & -1 & 0\\0 &0 & 0 &-1\end{matrix} \right)\cdot \left(\begin{matrix} E' & p_x^' & p_y^' & p_z^' \end{matrix} \right)=E_1E_1^'-\vec p_1\cdot \vec p_1^'
This gives
\left({\mathbf P_1}- {\mathbf P_1^'}\right)^2=\left( m_1^2-2\left(E_1E_1^'-\vec p_1\cdot \vec p_1^'\right)+ m_1^{'2}\right)=\left({\mathbf P_a}\right)^2=s
\left({\mathbf P_1}- {\mathbf P_2^'}\right)^2=\left( m_1^2-2\left(E_1E_2^'-\vec p_1\cdot \vec p_2^'\right)+ m_2^{'2}\right)=\left({\mathbf P_b}\right)^2=s
\left({\mathbf P_2}- {\mathbf P_1^'}\right)^2=\left( m_2^2-2\left(E_2E_1^'-\vec p_2\cdot \vec p_1^'\right)+ m_1^{'2}\right)=\left({\mathbf P_c}\right)^2=s
\left({\mathbf P_2}- {\mathbf P_2^'}\right)^2=\left( m_2^2-2\left(E_2E_2^'-\vec p_2\cdot \vec p_2^'\right)+ m_2^{'2}\right)=\left({\mathbf P_d}\right)^2=s
Using the relativistic expression for total energy
E=\sqrt{p^2+m^2\right)}\lt \math\gt \lt \center\gt
\lt center\gt \lt math\gt \left({\mathbf P_1}- {\mathbf P_1^'}\right)^2=\left( m_1^2-2\left( \sqrt{p_1^2+m_1^2} \sqrt{p_1^{'2}+m_1^{'2}}-\vec p_1\cdot \vec p_1^'\right)+ m_1^{'2}\right)=\left({\mathbf P_a}\right)^2=s
\left({\mathbf P_1}- {\mathbf P_2^'}\right)^2=\left( m_1^2-2\left( \sqrt{p_1^2+m_1^2} \sqrt{p_2^{'2}+m_2^{'2}}-\vec p_1\cdot \vec p_2^'\right)+ m_2^{'2}\right)=\left({\mathbf P_b}\right)^2=s
\left({\mathbf P_2}- {\mathbf P_1^'}\right)^2=\left( m_2^2-2\left( \sqrt{p_2^2+m_2^2} \sqrt{p_1^{'2}+m_1^{'2}}-\vec p_2\cdot \vec p_1^'\right)+ m_1^{'2}\right)=\left({\mathbf P_c}\right)^2=s
\left({\mathbf P_2}- {\mathbf P_2^'}\right)^2=\left( m_2^2-2\left( \sqrt{p_2^2+m_2^2} \sqrt{p_2^{'2}+m_2^{'2}}-\vec p_2\cdot \vec p_2^'\right)+ m_2^{'2}\right)=\left({\mathbf P_d}\right)^2=s
Mandelstam Representation