Difference between revisions of "HEDP notes"

From New IAC Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
  <math>B[T] = 0.2 \times I(kA) / r(mm) </math>
 
  <math>B[T] = 0.2 \times I(kA) / r(mm) </math>
  
*100 kA at 1 mm radius is 20 T
 
 
*10 MA at 4 mm radius is 500 T
 
*10 MA at 4 mm radius is 500 T
 +
*100 kA at 40 um radius is 500 T
 
*100 kA at 1 um radius is 20 kT
 
*100 kA at 1 um radius is 20 kT
  
Line 18: Line 18:
 
  <math> P_m(bar) = 0.16 \times I(kA)^2 \times R(mm)^{-2} </math>  
 
  <math> P_m(bar) = 0.16 \times I(kA)^2 \times R(mm)^{-2} </math>  
  
*100 kA at 1 mm radius is 1.6 kBar
 
 
*10 MA at 4 mm radius is 1 MBar
 
*10 MA at 4 mm radius is 1 MBar
 +
*100 kA at 40 um radius is 1 MBar
 
*100 kA at 1 um radius is 1.6 GBar
 
*100 kA at 1 um radius is 1.6 GBar
  

Revision as of 02:40, 26 September 2015

go back

high energy density plasma is a plasma with pressure above 1 MBar

[math]1 MBar = 1 \times 10^6 \times 10^5 Pa = 10^{11} Pa = 10^{11} (N m)/(m^2) = 10^{11} J/m = 10^{11} (10^7 erg)/(10^6 cm^3) = 10^{12} erg/cm^3[/math]

magnetic field produced by single wire (Biot-Savart Law)

[math]B[G] = 0.2 \times I(A) / r(cm) [/math]
[math]B[T] = 0.2 \times I(kA) / r(mm) [/math]
  • 10 MA at 4 mm radius is 500 T
  • 100 kA at 40 um radius is 500 T
  • 100 kA at 1 um radius is 20 kT

magnetic pressure

[math] P_m(bar) = 4 \times B(T)^2 [/math]
[math] P_m(bar) = 0.16 \times I(kA)^2 \times R(mm)^{-2} [/math] 
  • 10 MA at 4 mm radius is 1 MBar
  • 100 kA at 40 um radius is 1 MBar
  • 100 kA at 1 um radius is 1.6 GBar

Bennett condition

  • magnetic pressure = plasmakinetic pressure
  • 100 kA at 1 um radius is about 1.6 GBar of plasma pressure (wau!! really??!!)