Difference between revisions of "Forest UCM Osc Resonance"

From New IAC Wiki
Jump to navigation Jump to search
 
(34 intermediate revisions by the same user not shown)
Line 47: Line 47:
 
:<math>\omega = \omega_0</math>
 
:<math>\omega = \omega_0</math>
  
then the denominator is minimazed thereby maximizing the amplitude of the forced oscillation.
+
then the denominator is minimized thereby maximizing the amplitude of the forced oscillation.
  
 
Resonance occurs when your applied sinusoidal force matches the natural frequency of the oscillaor.
 
Resonance occurs when your applied sinusoidal force matches the natural frequency of the oscillaor.
Line 54: Line 54:
  
 
:<math>A= \frac{f_0}{2\beta \omega_0}</math>
 
:<math>A= \frac{f_0}{2\beta \omega_0}</math>
 +
 +
==Resonance Width==
 +
 +
While the natural frequency <math>(\omega_0)</math> determine the frequency where the maximum oscillation can occur,
 +
the dampening force parameter <math>(\beta)</math> determines the width of the resonance.
 +
 +
 +
If you look at the equation for the amplitude squared
 +
 +
:<math>A^2=\frac{f_0^2} { (\omega_0^2 - \omega^2)^2 + 4  \beta^2 \omega^2  }</math>
 +
 +
for the case that
 +
 +
:<math>\beta < \omega_0</math>
 +
 +
You get a maximum amplitude when <math>\omega \approx \omega_0</math>
 +
 +
:<math>A^2 \approx \frac{f_0^2}{ 4 \beta^2 \omega_0^2}</math>
 +
 +
The magnitude of <math>A^2</math> is cut in half if the denominator becomes
 +
 +
:<math>A^2 \approx \frac{f_0^2}{ 8 \beta^2 \omega_0^2}</math>
 +
 +
returning back to the original form of the denominator
 +
 +
:<math>A^2=\frac{f_0^2} { (\omega_0^2 - \omega^2)^2 + 4  \beta^2 \omega^2  } =\frac{f_0^2}{ 8 \beta^2 \omega_0^2}</math>
 +
you can have the denominator be
 +
 +
:<math>\Rightarrow(\omega_0^2 - \omega^2)^2 + 4  \beta^2 \omega^2  =  8 \beta^2 \omega_0^2</math>
 +
or
 +
 +
:<math>(\omega_0^2 - \omega^2)^2 =  4 \beta^2 \omega_0^2</math>
 +
 +
:<math>(\omega_0 - \omega)(\omega_0 + \omega) =  \pm 2 \beta \omega_0</math>
 +
:<math>(\omega_0 - \omega)(2\omega_0 ) =  \pm 2 \beta \omega_0</math>
 +
:<math> \omega =  \omega_0 \pm 2 \beta </math>
 +
 +
 +
The parameter <math>\beta</math> determines the width of the resonance
 +
  
 
==Quality factor (Q) ==
 
==Quality factor (Q) ==
  
 +
The ratio of the energy stored in the oscillator to the energy dissipated is defined as the "Quality" (Q) factor of the oscillation
 +
 +
:<math>Q = \frac{\mbox{Energy stored in oscillator}}{\mbox{Energy dissipated}}</math>
  
While the natural frequency <math>(\omega_0)</math> determine the frequency where the maximum oscillation can occur,
+
Consider the case of the underdamped oscillator
the dampening force parameter <math>(\beta)</math> determines the width of the resonance.
+
 
 +
:<math>x =  Ae^{- \beta t} \cos(\omega_1 t -\delta)</math>
 +
:<math>\dot x =  -\omega_1 Ae^{- \beta t} \left [\sin(\omega_1 t -\delta) + \frac{\beta}{\omega_1}\cos(\omega_1 t -\delta) \right ] </math>
 +
 
 +
 
 +
for a lightly damped oscillator
 +
 
 +
:<math>\beta < \omega_0</math>
 +
 
 +
since
 +
: <math>\omega_1 \equiv \sqrt{\omega^2_0- \beta^2 }  \approx \omega </math>
 +
 
 +
then
 +
 
 +
:<math>\dot x =  -\omega Ae^{- \beta t} \left [\sin(\omega t -\delta) \right ] </math>  
 +
 
 +
The energy stored int the oscillator may be written in term of the maximum kinetic energy as
 +
 
 +
:<math>E = K.E. (max) = \frac{1}{2} m \dot{x}^2 =  \frac{1}{2} m \omega^2 Ae^{- 2\beta t} = E_0 e^{- 2\beta t}</math>
 +
 
 +
where
 +
 
 +
: <math>E_0 =\frac{1}{2} m \omega^2 A</math>
 +
 
 +
The energy dissipated with time may be expressed as
 +
 
 +
:<math>\Delta E = \left | \frac{dE}{dt} \right | \delta t = \left | -2 \beta E_0 e^{- 2\beta t} \right | \delta t = 2 \beta E \delta t</math>
 +
 
 +
The energy lost from one oscillation is then
 +
:<math>\Delta t = \frac{1}{\omega}</math>
 +
 
 +
:<math>Q = \frac{\mbox{Energy stored in oscillator}}{\mbox{Energy dissipated}} = \frac{E}{\Delta E}</math>
 +
:: <math>= \frac{E}{2 \beta E  \frac{1}{\omega}}</math>
 +
:: <math>= \frac{\omega }{2 \beta }</math>
 +
 
 +
 
 +
 
 +
 
 +
The "sharpness" of the resonance is quantified in terms of a quality factor given by the ratio of the natural frequency to the dampening as
 +
 
 +
:<math> Q \equiv \frac{\omega_0}{2 \beta}=\frac{\frac{1}{\beta}}{2 \frac{1}{\omega_0}}=\frac{\tau_d}{2 \frac{1}{\omega_0}}</math>
 +
::<math> =\frac{\pi \tau_d}{2\pi \frac{1}{\omega_0}}</math>
 +
::<math> =\frac{\pi \tau_d}{\tau}=\pi \frac{\mbox{decay time}}{\mbox{period}}</math>
 +
 
 +
The above is proportions to the amount of energy stored in one cycle of the oscillation divided by the average energy dissipated in one cycle.
 +
 
 +
Some Q values for several oscilaltors
 +
 
 +
;Accelerator Settings
 +
{| border="1"
 +
| Q || System
 +
|-
 +
| 5-10 ||  rubberbands and loud speakers
 +
|-
 +
| <math>10^3</math>  || tuning forks and violin strings
 +
|-
 +
|<math>10^4</math>|| microwave cavity
 +
|-
 +
|<math>10^7</math>|| excited atoms
 +
|-
 +
|<math>10^{10}</math>|| CEBAF's accelerator RF cryomodule
 +
|-
 +
|<math>10^{12}</math>|| excited nuclei
 +
|-
 +
|<math>10^{14}</math>|| gas lasers
 +
|-
 +
|}
  
  
 
[[Forest_UCM_Osc#Resonance]]
 
[[Forest_UCM_Osc#Resonance]]

Latest revision as of 23:23, 14 October 2021

Oscillators driven by a source in resonance

¨x+2β˙x+ω20x=f(t)


Complete Solution for the Sinusoidally Driven Damped oscillator

x(t)=xh+xp=C1er1t+C2er2t+Acos(ωtδ)

where

r1=β+β2ω20
r2=β+β2+ω20
A=f0(ω20ω2)2+4β2ω2
δ=tan1(2βω(ω20ω2))


The first two terms in the solution are exponentially decaying and tend to damp the oscillation.

The last term in the solution is the response of the system to a sinusoidal driving force.

Thus you can apply a force to prevent the oscillations from dying out.

Resonance

Resonance is the condition that your applied sinusoidal force is set to a frequency that will maximize the damped oscillations.

This means that the amplitude A is maximized.

since

A=f0(ω20ω2)2+4β2ω2

then for a given forced amplitude (f0)

you can maximize the oscillation by minimizing the denominator term

(ω20ω2)2+4β2ω2

since β is the amount of friction being applied remove energy from the system and ω0 is the natural oscilaltion frequency (constants that characterize the system)

the only term you can change is the drive frequency ω of your applied sinusoidal force.

if your set your sinusoidal force to a frequncy

ω=ω0

then the denominator is minimized thereby maximizing the amplitude of the forced oscillation.

Resonance occurs when your applied sinusoidal force matches the natural frequency of the oscillaor.

This amplude is

A=f02βω0

Resonance Width

While the natural frequency (ω0) determine the frequency where the maximum oscillation can occur, the dampening force parameter (β) determines the width of the resonance.


If you look at the equation for the amplitude squared

A2=f20(ω20ω2)2+4β2ω2

for the case that

β<ω0

You get a maximum amplitude when ωω0

A2f204β2ω20

The magnitude of A2 is cut in half if the denominator becomes

A2f208β2ω20

returning back to the original form of the denominator

A2=f20(ω20ω2)2+4β2ω2=f208β2ω20

you can have the denominator be

(ω20ω2)2+4β2ω2=8β2ω20

or

(ω20ω2)2=4β2ω20
(ω0ω)(ω0+ω)=±2βω0
(ω0ω)(2ω0)=±2βω0
ω=ω0±2β


The parameter β determines the width of the resonance


Quality factor (Q)

The ratio of the energy stored in the oscillator to the energy dissipated is defined as the "Quality" (Q) factor of the oscillation

Q=Energy stored in oscillatorEnergy dissipated

Consider the case of the underdamped oscillator

x=Aeβtcos(ω1tδ)
˙x=ω1Aeβt[sin(ω1tδ)+βω1cos(ω1tδ)]


for a lightly damped oscillator

β<ω0

since

ω1ω20β2ω

then

˙x=ωAeβt[sin(ωtδ)]

The energy stored int the oscillator may be written in term of the maximum kinetic energy as

E=K.E.(max)=12m˙x2=12mω2Ae2βt=E0e2βt

where

E0=12mω2A

The energy dissipated with time may be expressed as

ΔE=|dEdt|δt=|2βE0e2βt|δt=2βEδt

The energy lost from one oscillation is then

Δt=1ω
Q=Energy stored in oscillatorEnergy dissipated=EΔE
=E2βE1ω
=ω2β



The "sharpness" of the resonance is quantified in terms of a quality factor given by the ratio of the natural frequency to the dampening as

Qω02β=1β21ω0=τd21ω0
=πτd2π1ω0
=πτdτ=πdecay timeperiod

The above is proportions to the amount of energy stored in one cycle of the oscillation divided by the average energy dissipated in one cycle.

Some Q values for several oscilaltors

Accelerator Settings
Q System
5-10 rubberbands and loud speakers
103 tuning forks and violin strings
104 microwave cavity
107 excited atoms
1010 CEBAF's accelerator RF cryomodule
1012 excited nuclei
1014 gas lasers


Forest_UCM_Osc#Resonance