Difference between revisions of "Forest UCM Osc SHM"
(Created page with " Forest_UCM_Osc#Simple_Harmonic_Motion_.28SHM.29") |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | |||
+ | =Simple Harmonic Motion= | ||
+ | |||
+ | ==Equation of motion== | ||
+ | |||
+ | In solving the differential equation | ||
+ | |||
+ | :<math> m\ddot x =-kx </math>energy is constant with time | ||
+ | |||
+ | |||
+ | and observe that the above differential equation is a special case of the more general differential equation | ||
+ | |||
+ | :<math> m\ddot x + c \dot x =-kx </math>energy is constant with time | ||
+ | |||
+ | one could rewrite the above as | ||
+ | |||
+ | :<math> \left ( \frac{d}{dt}\frac{d}{dt} +\frac{d}{dt} + k \right ) x = 0 </math> | ||
+ | |||
+ | One could cast the above differential equation into an analogous quadratic equation if you | ||
+ | |||
+ | let | ||
+ | |||
+ | :<math>O = \frac{d}{dt}</math> | ||
+ | |||
+ | |||
+ | then the analogous (known as the auxilary ) equation becomes | ||
+ | |||
+ | :<math> \left ( mO^2 + aO + k \right ) x = 0 </math> | ||
+ | |||
+ | where m, a, and k are constants | ||
+ | |||
+ | factoring this quadratic you would have | ||
+ | |||
+ | :<math> \left ( O - \gamma \right )\left ( O - \beta \right ) x = 0 </math> | ||
+ | |||
+ | where a non-trivial solution would exist if one of the terms in the parentheses were zero | ||
+ | |||
+ | this basically reduces our 2nd order differential equation down to two first order differential equations | ||
+ | |||
+ | :<math> \left ( \frac{d}{dt} - \gamma \right ) \left ( \frac{d}{dt} + \beta \right ) x = 0 </math> | ||
+ | |||
+ | one of the solutions would be | ||
+ | |||
+ | :<math> \frac{d}{dt} x - \gamma x= 0 </math> | ||
+ | :<math> \frac{dx}{x} = \gamma dt </math> | ||
+ | :<math> x = Ae^{\gamma t} </math> | ||
+ | |||
+ | |||
+ | :<math> x = Ae^{\gamma t} + Be^{\beta t} </math> | ||
+ | |||
+ | |||
+ | For the special case where there isn't a first derivative term (a=0) | ||
+ | |||
+ | You simply have | ||
+ | |||
+ | :<math> \left ( m\frac{d}{dt}\frac{d}{dt} + k \right ) x = 0 </math> | ||
+ | |||
+ | or | ||
+ | :<math> \left ( mO^2 + k \right ) x = 0 </math> | ||
+ | |||
+ | :<math> O= \pm \sqrt{-\frac{k}{m}} = \pm i \sqrt{-\frac{k}{m}}</math> | ||
+ | :<math> \gamma \equiv +i\sqrt{\frac{k}{m}} = i \omega</math> | ||
+ | :<math> \beta = -i\sqrt{\frac{k}{m}} = -i \omega</math> | ||
+ | |||
+ | then you have | ||
+ | |||
+ | :<math> x = Ae^{\gamma t} + Be^{\beta t} </math> | ||
+ | ::<math> = Ae^{i \omega t} + Be^{-i\omega t} </math> | ||
+ | |||
+ | ==Oscillator properties== | ||
+ | |||
+ | :<math> x = Ae^{i \omega t} + Be^{-i\omega t} </math> | ||
+ | |||
+ | Using Euler's formula for complex variables | ||
+ | |||
+ | :<math>e^{\pm ix} = \cos(x) \pm i \sin(x)</math> | ||
+ | |||
+ | :<math>\Rightarrow x = A\left ( \cos(\omega t) + i \sin(\omega t)\right ) + B\left ( \cos(\omega t) - i \sin(\omega t)\right )</math> | ||
+ | ::: <math>= (A + B) \cos (\omega t) + i(A-B) \sin(\omega t)</math> | ||
+ | ::: <math>= (A + B) \cos (\omega t) + i(A-B) \sin(\omega t)</math> | ||
+ | ::: <math>= A^{\prime}\cos (\omega t) + B^{\prime} \sin(\omega t)</math> | ||
+ | |||
+ | let | ||
+ | |||
+ | :<math>C = \sqrt{\left(A^{\prime}\right)^2+ \left ( B^{\prime}\right)^2}</math> | ||
+ | |||
+ | :<math>\cos\delta = \frac{A^{\prime}}{C}</math> | ||
+ | :<math>\sin\delta = \frac{B^{\prime}}{C}</math> | ||
+ | |||
+ | then | ||
+ | |||
+ | :<math>x = A^{\prime}\cos (\omega t) + B^{\prime} \sin(\omega t)</math> | ||
+ | ::<math> = C \left [ \frac{A^{\prime}}{C}\cos (\omega t) + \frac{B^{\prime}}{C} \sin(\omega t) \right ]</math> | ||
+ | ::<math> = C \left [\cos\delta\cos (\omega t) + \sin\delta \sin(\omega t) \right ]</math> | ||
+ | ::<math> = C \cos (\omega t - \delta) </math> | ||
+ | |||
+ | :<math>\cos(A-B) = \cos(A)\cos(B)+\sin(B)\sin(A)</math> | ||
+ | |||
+ | :<math>x=A \cos(\omega t - \delta)</math> | ||
+ | :<math>v = \dot x = \omega A \sin(\omega t - \delta)</math> | ||
+ | |||
+ | ==Kinetic (T) and potential (U) Energy == | ||
+ | |||
+ | :<math>U= \frac{1}{2} k x^2 =\frac{1}{2} m \omega^2 A^2 \cos^2(\omega t - \delta)</math> | ||
+ | :<math>T= \frac{1}{2} m v^2 =\frac{1}{2} m \omega^2 A^2 \sin^2(\omega t - \delta)</math> | ||
+ | |||
+ | :<math>E = T + U= \frac{1}{2} m \omega^2 A^2 \sin^2(\omega t - \delta) +\frac{1}{2} m \omega^2 A^2 \cos^2(\omega t - \delta)</math> | ||
+ | :::<math>= \frac{1}{2} m \omega^2 A^2 =</math>constant | ||
+ | |||
+ | |||
+ | :<math>U_{\mbox{max}}= \frac{1}{2} k x^2_{\mbox{max}} =\frac{1}{2} m \omega^2 A^2 \cos^2(\omega t - \delta)_{\mbox{max}}= \frac{1}{2} m \omega^2 A^2=E</math> | ||
+ | :<math>T_{\mbox{max}}= \frac{1}{2} m v^2_{\mbox{max}} =\frac{1}{2} m \omega^2 A^2 \sin^2(\omega t - \delta)_{\mbox{max}}= \frac{1}{2} m \omega^2 A^2=E</math> | ||
[[Forest_UCM_Osc#Simple_Harmonic_Motion_.28SHM.29]] | [[Forest_UCM_Osc#Simple_Harmonic_Motion_.28SHM.29]] |
Latest revision as of 12:43, 5 October 2014
Simple Harmonic Motion
Equation of motion
In solving the differential equation
- energy is constant with time
and observe that the above differential equation is a special case of the more general differential equation
- energy is constant with time
one could rewrite the above as
One could cast the above differential equation into an analogous quadratic equation if you
let
then the analogous (known as the auxilary ) equation becomes
where m, a, and k are constants
factoring this quadratic you would have
where a non-trivial solution would exist if one of the terms in the parentheses were zero
this basically reduces our 2nd order differential equation down to two first order differential equations
one of the solutions would be
For the special case where there isn't a first derivative term (a=0)
You simply have
or
then you have
Oscillator properties
Using Euler's formula for complex variables
let
then
Kinetic (T) and potential (U) Energy
- constant