Difference between revisions of "Forest UCM Osc"

From New IAC Wiki
Jump to navigation Jump to search
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
  
 
=Hooke's Law=
 
=Hooke's Law=
 +
[[Forest_UCM_Osc_HookesLaw]]
  
==Derivation==
+
=Simple Harmonic Motion (SHM)=
  
In the previous chapter we saw how the equations of motion could from the requirement that Energy be conserved.
+
[[Forest_UCM_Osc_SHM]]
  
: <math>E = T + U</math>
+
=2-D Oscillators=
:<math> T = E - U</math>
 
:<math> \frac{1}{2} m v^2 = E- U</math>
 
  
in 1-D
+
[[Forest_UCM_Osc_2-DOsc]]
  
:<math> \dot {x}^2 = \frac{2}{m} \left ( E-U(x) \right )</math>
+
=Damped Oscillations=
:<math> \dot {x}^2= \frac{2}{m} \left ( E-U(x) \right )</math>
 
:<math> \dot {x}= \sqrt{\frac{2}{m} \left ( E-U(x) \right )}</math>
 
:<math> \frac{dx}{dt}= \sqrt{\frac{2}{m} \left ( E-U(x) \right )}</math>
 
:<math> \frac{dx}{ \sqrt{\frac{2}{m} \left ( E-U(x) \right )}}=dt</math>
 
:<math> \frac{m}{2} \int \frac{dx}{ \sqrt{\left ( E-U(x) \right )}}=\int dt</math>
 
 
 
 
 
==Interpretation (Hooke's law==
 
 
 
The Force exerted by a spring is proportional to the spring displacement from equilibrium and is directed towards restoring the equilibrium condition.  (a linear restoring force).
 
 
 
 
 
In 1-D this force may be written as
 
 
 
:<math>F = - kx</math>
 
 
 
 
 
Is this a conservative force?
 
 
 
1.) The force only depends on position.
 
 
 
2.) The work done is independent of path ( <math>\vec \nabla \times \vec F = 0</math> in 1-D and 3-D)
 
  
==Potential==
 
  
:<math>U = - \int \vec F \cdot \vec r = - \int (-kx) dx = \frac{1}{2} k x^2</math>
+
[[Forest_UCM_Osc_Damped]]
  
=Simple Harmonic Motion (SHM)=
+
=Damped Oscillations with driving source=
  
=2-D Oscillators=
 
  
=Damped Oscillations=
+
[[Forest_UCM_Osc_Driven]]
  
 
=Resonance=
 
=Resonance=
  
  
 +
[[Forest_UCM_Osc_Resonance]]
  
 
[[Forest_Ugrad_ClassicalMechanics]]
 
[[Forest_Ugrad_ClassicalMechanics]]

Latest revision as of 12:06, 6 October 2014