Difference between revisions of "Forest UCM PnCP ProjMotion"

From New IAC Wiki
Jump to navigation Jump to search
 
(58 intermediate revisions by the same user not shown)
Line 13: Line 13:
 
Using our solutions for the horizontal and vertical motion when friction depends linearly on velocity ([[Forest_UCM_PnCP_LinAirRes]]) we can write :
 
Using our solutions for the horizontal and vertical motion when friction depends linearly on velocity ([[Forest_UCM_PnCP_LinAirRes]]) we can write :
  
: <math>x=  \frac{m}{b} v_i \left ( 1-e^{-\frac{b}{m}t} \right )</math>
+
: <math>x=  \frac{m}{b} v_{ix} \left ( 1-e^{-\frac{b}{m}t} \right )</math>
 +
 
 +
where <math>v_{ix}</math> has replaced <math>v_i</math> so the components are more explicitly identifiable.
  
 
in the y-direction however, the directions are changed to represent an object moving upwards instead of falling
 
in the y-direction however, the directions are changed to represent an object moving upwards instead of falling
Line 33: Line 35:
 
becomes
 
becomes
  
:<math>y = -v_t t + \frac{m}{b}\left ( v_0 + v_t \right ) \left ( 1- e^{-\frac{b}{m}t}  \right ) </math>
+
:<math>y = -v_t t + \frac{m}{b}\left ( v_{iy} + v_t \right ) \left ( 1- e^{-\frac{b}{m}t}  \right ) </math>
 +
 
 +
where <math>v_{iy}</math> has replaced <math>v_0</math> so the components are more explicitly identifiable.
 +
 
  
 
We now have a system governed by the following system of two equations
 
We now have a system governed by the following system of two equations
Line 41: Line 46:
 
<math>\tau \equiv \frac{m}{b}</math>
 
<math>\tau \equiv \frac{m}{b}</math>
  
:<math>x=  \tau v_i \left ( 1-e^{-\frac{t}{\tau}} \right )</math>
+
:<math>x=  \tau v_{ix} \left ( 1-e^{-\frac{t}{\tau}} \right )</math>
:<math>y =  \tau\left ( v_0 + v_t \right ) \left ( 1- e^{-\frac{t}{\tau}}  \right )  -v_t t</math>
+
:<math>y =  \tau\left ( v_{iy} + v_t \right ) \left ( 1- e^{-\frac{t}{\tau}}  \right )  -v_t t</math>
  
 
==Range equation==
 
==Range equation==
Line 52: Line 57:
 
solving for <math>e^{-\frac{t}{\tau}}</math> using the x-direction equation
 
solving for <math>e^{-\frac{t}{\tau}}</math> using the x-direction equation
  
:<math>x=  \tau v_i \left ( 1-e^{-\frac{t}{\tau}} \right )</math>
+
:<math>x=  \tau v_{ix} \left ( 1-e^{-\frac{t}{\tau}} \right )</math>
:<math>\Rightarrow e^{-\frac{t}{\tau}} = 1- \frac{x }{v_i \tau}</math>
+
:<math>\Rightarrow e^{-\frac{t}{\tau}} = 1- \frac{x }{v_{ix} \tau}</math>
  
 
substituting for <math>e^{-\frac{t}{\tau}}</math>
 
substituting for <math>e^{-\frac{t}{\tau}}</math>
  
:<math>y = \tau \left ( v_0 + v_t \right ) \left (  \frac{x }{v_i \tau}  \right )  -v_t t</math>
+
:<math>y = \tau \left ( v_{iy} + v_t \right ) \left (  \frac{x }{v_i \tau}  \right )  -v_t t</math>
::<math>= \frac{  v_0 + v_t }{v_i} x    -v_t t</math>
+
::<math>= \frac{  v_{iy} + v_t }{v_i} x    -v_t t</math>
 +
 
 +
now we need to substitute for time <math>t</math>
 +
 
 +
:<math> e^{-\frac{t}{\tau}} = 1- \frac{x }{v_{ix} \tau}</math>
 +
::<math>\Rightarrow \ln \left (  e^{-\frac{t}{\tau}} \right)  = \ln \left ( 1- \frac{x }{v_{ix} \tau}\right)</math>
 +
::<math>-\frac{t}{\tau} = \ln \left ( 1- \frac{x }{v_{ix} \tau}\right)</math>
 +
::<math>t = -\tau\ln \left ( 1- \frac{x }{v_{ix} \tau}\right)</math>
 +
 
 +
substituting for time
 +
 
 +
:<math>y =\frac{  v_{iy} + v_t }{v_{ix}} x    -v_t t</math>
 +
::<math> =\frac{  v_{iy} + v_t }{v_{ix}} x + v_t \tau\ln \left ( 1- \frac{x }{v_{ix} \tau}\right)</math>
 +
 
 +
 
 +
The Range <math>(R)</math> is defined as the value for <math>x</math> when <math>y =0</math>
 +
 
 +
:<math>0 = \frac{  v_{iy} + v_t }{v_{ix}} R + v_t \tau\ln \left ( 1- \frac{R }{v_{ix} \tau}\right)</math>
 +
 
 +
:<math>v_{ix} = v_0 \cos \theta </math>
 +
:<math>v_{iy} = v_0 \sin \theta</math> 
 +
 
 +
 
 +
The above equation does not have an exact analytical solution.
 +
 
 +
You can try to solve it graphically or by taylor expanding small quantities when they appear as arguments to functions like the <math>\ln</math> function
 +
 
 +
==Solution by Taylor expansion==
 +
 
 +
If
 +
 
 +
 
 +
=== ln(1-x) Taylor expansion===
 +
 
 +
Taylor expanding about x = 0 for
 +
 
 +
:<math>\frac{1}{1+x} = f(x=0) + \left . \frac{d f(x)}{dx} \right |_{x=0} \frac{x-0}{1!} + \left . \frac{d^2 f(x)}{dx^2} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots = \sum_{n=0}^\infty \left . \frac{d^n f(x)}{dx^n} \right |_{x=0} \frac{(x-0)^n}{n!}</math>
 +
::<math>=1 - \left . (1+x)^{-2} \right |_{x=0} \frac{(x-0)^1}{1!} + 2 \left . (1+x)^{-3} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots</math>
 +
::<math> = 1 -x + 2\frac{(x)^2}{2!} - 2*3 \frac{(x)^3}{3!} + \cdots </math>
 +
::<math> = 1 -x + x^2 - x^3 + \cdots = \sum_{n=0}^{\infty} (-x)^{n-1}</math>
 +
 
 +
:<math>\ln(1+x) = \int \frac{1}{1+x} dx = \int \left ( 1 -x + x^2 - x^3 + \cdots \right ) dx</math>
 +
::<math>= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots </math>
 +
 
 +
 
 +
similarly
 +
 
 +
 
 +
:<math>\int \frac{1}{1-x} dx =  -\int \frac{1}{u} du \;\;\;\; u = 1-x \;\;\;\;  du = -dx</math>
 +
:<math>\int \frac{1}{1-x} dx =  -\ln(u) = -\ln(1-x)</math>
 +
 
 +
Taylor expanding about x=0
 +
 
 +
:<math>\frac{1}{1-x} = f(x=0) + \left . \frac{d f(x)}{dx} \right |_{x=0} \frac{x-0}{1!} + \left . \frac{d^2 f(x)}{dx^2} \right |_{x=0}
 +
\frac{(x-0)^2}{2!} + \cdots = \sum_{n=0}^\infty \left . \frac{d^n f(x)}{dx^n} \right |_{x=0} \frac{(x-0)^n}{n!}</math>
 +
::<math>=1 + \left . (1-x)^{-2} \right |_{x=0} \frac{(x-0)^1}{1!} + 2 \left . (1+x)^{-3} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots</math>
 +
::<math> = 1 + x + 2\frac{(x)^2}{2!} + 2*3 \frac{(x)^3}{3!} + \cdots </math>
 +
::<math> = 1 +x + x^2 +x^3 + \cdots = \sum_{n=0}^{\infty} (x)^{n-1}</math>
 +
 
 +
:<math>\int \frac{1}{1-x} dx = -\ln(1-x) = \int \left ( 1 +x + x^2 +x^3 + \cdots  \right ) dx</math>
 +
 
 +
 
 +
:<math>-\ln(1-x) =  x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots </math>
 +
 
 +
 
 +
:<math>\ln(1-x) =  - \left ( x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots \right )  </math>
 +
 
 +
===Taylor expand ln term in Range equation===
 +
 
 +
:<math>\ln \left ( 1- \frac{R }{v_{ix} \tau}\right) = - \left ( \frac{R }{v_{ix} \tau} + \frac{\left ( \frac{R }{v_{ix} \tau} \right ) ^2}{2}+ \frac{\left ( \frac{R }{v_{ix} \tau} \right ) ^3}{3}  + \cdots \right )</math>
 +
 
 +
 
 +
:<math> \frac{  v_{iy} + v_t }{v_{ix}} R = v_t \tau \left ( \frac{R }{v_{ix} \tau} + \frac{\left ( \frac{R }{v_{ix} \tau} \right ) ^2}{2}+ \frac{\left ( \frac{R }{v_{ix} \tau} \right ) ^3}{3}  + \cdots \right )</math>
 +
 
 +
 
 +
;<math>R=0</math> is a solution <math>\Rightarrow</math>  height is zero when <math>R = 0</math>
 +
 
 +
 
 +
:<math> \frac{  v_{iy} + v_t }{v_{ix}}  = v_t \tau \left ( \frac{1 }{v_{ix} \tau} + \frac{R }{2v_{ix}^2 \tau^2}+ \frac{R^2 }{3 v_{ix}^3 \tau^3}  + \cdots \right )</math>
 +
:<math> v_{iy} + v_t  = v_t \left ( 1  + \frac{R }{2v_{ix} \tau}+ \frac{R^2 }{3 v_{ix}^2 \tau^2}  + \cdots \right )</math>
 +
:<math> v_{iy}  =  v_t\left ( \frac{R }{2v_{ix} \tau}+ \frac{R^2 }{3 v_{ix}^2 \tau^2}  + \cdots \right )</math>
  
 +
:<math>  \frac{R }{2v_{ix} \tau} \sim \frac{v_{iy}}{v_t}    -  \frac{R^2 }{3 v_{ix}^2 \tau^2}  </math>
 +
:<math>  R  \sim \frac{2v_{iy}v_{ix} \tau}{v_t}    -  \frac{2 R^2 v_{ix} \tau}{3 v_{ix}^2 \tau^2}  </math>
 +
::<math>  \sim \frac{2v_{iy}v_{ix}}{g}    -  \frac{2 }{3 v_{ix} \tau} R^2 </math>
 +
::<math>  \sim R_{vacuum}    -  \frac{2 }{3 v_{ix} \tau} R^2 </math>
  
 
[[Forest_UCM_PnCP#Projecile_Motion]]
 
[[Forest_UCM_PnCP#Projecile_Motion]]

Latest revision as of 14:27, 7 September 2021

Projectile Motion

Friction depends linearly on velocity

Projectile motion describes the path a mass moving in two dimensions. An example of which is the motion of a projectile shot out of a cannon with an initial velocity [math]v_0[/math] with an angle of inclination [math]\theta[/math].

When the motion in each dimension is independent, the kinematics are separable giving you two equations of motion that depend on the same time.


Using our solutions for the horizontal and vertical motion when friction depends linearly on velocity (Forest_UCM_PnCP_LinAirRes) we can write :

[math]x= \frac{m}{b} v_{ix} \left ( 1-e^{-\frac{b}{m}t} \right )[/math]

where [math]v_{ix}[/math] has replaced [math]v_i[/math] so the components are more explicitly identifiable.

in the y-direction however, the directions are changed to represent an object moving upwards instead of falling

Newton's second law for falling

[math]\sum \vec{F}_{ext} = mg -bv = m \frac{dv}{dt}[/math]

becomes

[math]\sum \vec{F}_{ext} = -mg +bv = m \frac{dv}{dt}[/math]

for a rising projectile

This changes the signs in front of the [math]v_t[/math] terms such that

[math]y= v_t t + \frac{m}{b}\left ( v_0 - v_t \right ) \left ( 1- e^{-\frac{b}{m}t} \right ) [/math]

becomes

[math]y = -v_t t + \frac{m}{b}\left ( v_{iy} + v_t \right ) \left ( 1- e^{-\frac{b}{m}t} \right ) [/math]

where [math]v_{iy}[/math] has replaced [math]v_0[/math] so the components are more explicitly identifiable.


We now have a system governed by the following system of two equations

let

[math]\tau \equiv \frac{m}{b}[/math]

[math]x= \tau v_{ix} \left ( 1-e^{-\frac{t}{\tau}} \right )[/math]
[math]y = \tau\left ( v_{iy} + v_t \right ) \left ( 1- e^{-\frac{t}{\tau}} \right ) -v_t t[/math]

Range equation

To determine how far the projectile will travel in the x-direction (Range) you can solve the above equation for [math]y[/math] in the case that [math]y=0[/math].

since time is the same in both equations you can solve for time in terms of x and substitute for time inthe y-direction equations.

solving for [math]e^{-\frac{t}{\tau}}[/math] using the x-direction equation

[math]x= \tau v_{ix} \left ( 1-e^{-\frac{t}{\tau}} \right )[/math]
[math]\Rightarrow e^{-\frac{t}{\tau}} = 1- \frac{x }{v_{ix} \tau}[/math]

substituting for [math]e^{-\frac{t}{\tau}}[/math]

[math]y = \tau \left ( v_{iy} + v_t \right ) \left ( \frac{x }{v_i \tau} \right ) -v_t t[/math]
[math]= \frac{ v_{iy} + v_t }{v_i} x -v_t t[/math]

now we need to substitute for time [math]t[/math]

[math] e^{-\frac{t}{\tau}} = 1- \frac{x }{v_{ix} \tau}[/math]
[math]\Rightarrow \ln \left ( e^{-\frac{t}{\tau}} \right) = \ln \left ( 1- \frac{x }{v_{ix} \tau}\right)[/math]
[math]-\frac{t}{\tau} = \ln \left ( 1- \frac{x }{v_{ix} \tau}\right)[/math]
[math]t = -\tau\ln \left ( 1- \frac{x }{v_{ix} \tau}\right)[/math]

substituting for time

[math]y =\frac{ v_{iy} + v_t }{v_{ix}} x -v_t t[/math]
[math] =\frac{ v_{iy} + v_t }{v_{ix}} x + v_t \tau\ln \left ( 1- \frac{x }{v_{ix} \tau}\right)[/math]


The Range [math](R)[/math] is defined as the value for [math]x[/math] when [math]y =0[/math]

[math]0 = \frac{ v_{iy} + v_t }{v_{ix}} R + v_t \tau\ln \left ( 1- \frac{R }{v_{ix} \tau}\right)[/math]
[math]v_{ix} = v_0 \cos \theta [/math]
[math]v_{iy} = v_0 \sin \theta[/math]


The above equation does not have an exact analytical solution.

You can try to solve it graphically or by taylor expanding small quantities when they appear as arguments to functions like the [math]\ln[/math] function

Solution by Taylor expansion

If


ln(1-x) Taylor expansion

Taylor expanding about x = 0 for

[math]\frac{1}{1+x} = f(x=0) + \left . \frac{d f(x)}{dx} \right |_{x=0} \frac{x-0}{1!} + \left . \frac{d^2 f(x)}{dx^2} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots = \sum_{n=0}^\infty \left . \frac{d^n f(x)}{dx^n} \right |_{x=0} \frac{(x-0)^n}{n!}[/math]
[math]=1 - \left . (1+x)^{-2} \right |_{x=0} \frac{(x-0)^1}{1!} + 2 \left . (1+x)^{-3} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots[/math]
[math] = 1 -x + 2\frac{(x)^2}{2!} - 2*3 \frac{(x)^3}{3!} + \cdots [/math]
[math] = 1 -x + x^2 - x^3 + \cdots = \sum_{n=0}^{\infty} (-x)^{n-1}[/math]
[math]\ln(1+x) = \int \frac{1}{1+x} dx = \int \left ( 1 -x + x^2 - x^3 + \cdots \right ) dx[/math]
[math]= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots [/math]


similarly


[math]\int \frac{1}{1-x} dx = -\int \frac{1}{u} du \;\;\;\; u = 1-x \;\;\;\; du = -dx[/math]
[math]\int \frac{1}{1-x} dx = -\ln(u) = -\ln(1-x)[/math]

Taylor expanding about x=0

[math]\frac{1}{1-x} = f(x=0) + \left . \frac{d f(x)}{dx} \right |_{x=0} \frac{x-0}{1!} + \left . \frac{d^2 f(x)}{dx^2} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots = \sum_{n=0}^\infty \left . \frac{d^n f(x)}{dx^n} \right |_{x=0} \frac{(x-0)^n}{n!}[/math]
[math]=1 + \left . (1-x)^{-2} \right |_{x=0} \frac{(x-0)^1}{1!} + 2 \left . (1+x)^{-3} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots[/math]
[math] = 1 + x + 2\frac{(x)^2}{2!} + 2*3 \frac{(x)^3}{3!} + \cdots [/math]
[math] = 1 +x + x^2 +x^3 + \cdots = \sum_{n=0}^{\infty} (x)^{n-1}[/math]
[math]\int \frac{1}{1-x} dx = -\ln(1-x) = \int \left ( 1 +x + x^2 +x^3 + \cdots \right ) dx[/math]


[math]-\ln(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots [/math]


[math]\ln(1-x) = - \left ( x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots \right ) [/math]

Taylor expand ln term in Range equation

[math]\ln \left ( 1- \frac{R }{v_{ix} \tau}\right) = - \left ( \frac{R }{v_{ix} \tau} + \frac{\left ( \frac{R }{v_{ix} \tau} \right ) ^2}{2}+ \frac{\left ( \frac{R }{v_{ix} \tau} \right ) ^3}{3} + \cdots \right )[/math]


[math] \frac{ v_{iy} + v_t }{v_{ix}} R = v_t \tau \left ( \frac{R }{v_{ix} \tau} + \frac{\left ( \frac{R }{v_{ix} \tau} \right ) ^2}{2}+ \frac{\left ( \frac{R }{v_{ix} \tau} \right ) ^3}{3} + \cdots \right )[/math]


[math]R=0[/math] is a solution [math]\Rightarrow[/math] height is zero when [math]R = 0[/math]


[math] \frac{ v_{iy} + v_t }{v_{ix}} = v_t \tau \left ( \frac{1 }{v_{ix} \tau} + \frac{R }{2v_{ix}^2 \tau^2}+ \frac{R^2 }{3 v_{ix}^3 \tau^3} + \cdots \right )[/math]
[math] v_{iy} + v_t = v_t \left ( 1 + \frac{R }{2v_{ix} \tau}+ \frac{R^2 }{3 v_{ix}^2 \tau^2} + \cdots \right )[/math]
[math] v_{iy} = v_t\left ( \frac{R }{2v_{ix} \tau}+ \frac{R^2 }{3 v_{ix}^2 \tau^2} + \cdots \right )[/math]
[math] \frac{R }{2v_{ix} \tau} \sim \frac{v_{iy}}{v_t} - \frac{R^2 }{3 v_{ix}^2 \tau^2} [/math]
[math] R \sim \frac{2v_{iy}v_{ix} \tau}{v_t} - \frac{2 R^2 v_{ix} \tau}{3 v_{ix}^2 \tau^2} [/math]
[math] \sim \frac{2v_{iy}v_{ix}}{g} - \frac{2 }{3 v_{ix} \tau} R^2 [/math]
[math] \sim R_{vacuum} - \frac{2 }{3 v_{ix} \tau} R^2 [/math]

Forest_UCM_PnCP#Projecile_Motion