Difference between revisions of "Forest UCM PnCP LinAirRes"
Jump to navigation
Jump to search
Line 36: | Line 36: | ||
:<math> -\frac{b}{m}t = \ln{\left( v -v_t \right)} - \ln{\left ( v_0-v_t \right )}</math> | :<math> -\frac{b}{m}t = \ln{\left( v -v_t \right)} - \ln{\left ( v_0-v_t \right )}</math> | ||
:<math> -\frac{b}{m}t = \ln \left(\frac{ v -v_t }{v_0-v_t}\right )</math> | :<math> -\frac{b}{m}t = \ln \left(\frac{ v -v_t }{v_0-v_t}\right )</math> | ||
− | :<math> e^{- | + | :<math> e^{-\frac{b}{m}t} = \left(\frac{ v -v_t }{v_0-v_t}\right )</math> |
:<math> v -v_t = \left ( v_0-v_t\right )e^{-\frac{b}{m}t}</math> | :<math> v -v_t = \left ( v_0-v_t\right )e^{-\frac{b}{m}t}</math> | ||
:<math> v = v_0e^{-\frac{b}{m}t} + v_t \left (1 -e^{-\frac{b}{m}t}\right )</math> | :<math> v = v_0e^{-\frac{b}{m}t} + v_t \left (1 -e^{-\frac{b}{m}t}\right )</math> | ||
Line 46: | Line 46: | ||
:<math> \int_0^y = \int_0^t \left ( v_0e^{-\frac{b}{m}t} + v_t \left (1 -e^{-\frac{b}{m}t}\right ) \right ) dt</math> | :<math> \int_0^y = \int_0^t \left ( v_0e^{-\frac{b}{m}t} + v_t \left (1 -e^{-\frac{b}{m}t}\right ) \right ) dt</math> | ||
:<math>y = \int_0^t v_0e^{-\frac{b}{m}t}dt + \int_0^t v_t \left (1 -e^{-b\frac{b}{m}t}\right ) dt</math> | :<math>y = \int_0^t v_0e^{-\frac{b}{m}t}dt + \int_0^t v_t \left (1 -e^{-b\frac{b}{m}t}\right ) dt</math> | ||
− | ::<math>= \frac{v_0}{-\frac{b}{m}}\left ( e^{-\frac{b}{m}t}-e^{-b0} \right ) + v_t t + \frac{mv_t}{b}\left ( e^{-\frac{b}{m}t} - e^{- | + | ::<math>= \frac{v_0}{-\frac{b}{m}}\left ( e^{-\frac{b}{m}t}-e^{-b0} \right ) + v_t t + \frac{mv_t}{b}\left ( e^{-\frac{b}{m}t} - e^{-\frac{b}{m}0}\right ) </math> |
::<math>= \frac{v_0}{\frac{b}{m}}\left ( 1- e^{-\frac{b}{m}t} \right ) + v_t t + \frac{v_t}{b}\left ( e^{-bt} - 1\right ) </math> | ::<math>= \frac{v_0}{\frac{b}{m}}\left ( 1- e^{-\frac{b}{m}t} \right ) + v_t t + \frac{v_t}{b}\left ( e^{-bt} - 1\right ) </math> | ||
::<math>= v_t t + \frac{m}{b}\left ( v_0 - v_t) \right ) \left ( 1- e^{-\frac{b}{m}t} \right ) </math> | ::<math>= v_t t + \frac{m}{b}\left ( v_0 - v_t) \right ) \left ( 1- e^{-\frac{b}{m}t} \right ) </math> |
Latest revision as of 12:43, 1 September 2014
Linear Air Resistance
Horizontal motion
If
is unity then the velocity is exponentially approaching zero.- : negative sign indicates a retarding force and is a proportionality constant
- ;
The displacement is given by
Example: falling object with linear air friction
Consider a ball falling under the influence of gravity and a frictional force that is proportion to its velocity
let
- coefficient of air resistance
- Terminal speed
The posiiton as a function of time may be determined by directly integrating the above equation