|   |     | 
| (18 intermediate revisions by the same user not shown) | 
| Line 22: | Line 22: | 
|  | Air resistance for rain drops or ball bearings in oil tends to be more linear while canon balls and people falling through the air tends to be more quadratic. |  | Air resistance for rain drops or ball bearings in oil tends to be more linear while canon balls and people falling through the air tends to be more quadratic. | 
|  |  |  |  | 
| − | ==Linear Air Resistance==
 |  | 
|  |  |  |  | 
| − | ; Horizontal motion 
 | + | Example:  A Sphere moving through air at STP | 
|  |  |  |  | 
| − | If <math>n</math>is unity then the velocity is exponentially approaching zero.
 | + | ;Linear: | 
|  | + | :<math>F_f = bv = \beta D v = \left ( 1.6 \times 10^{-4} \frac{N \cdot s}{m^2}\right ) D v</math> | 
|  | + | ;Quadratic: | 
|  | + | :<math>F_f = cv^2 = \gamma D^2 v^2 = \left ( 2.5 \times 10^{-1} \frac{N \cdot s^2}{m^4}\right ) D^2 v^2</math> | 
|  |  |  |  | 
| − | :<math>F(v) =-bv</math>: negative sign indicates a retarding force and <math>b</math>is a proportionality constant | + | :<math>\frac{F_f(\mbox{Quadratic})}{F_f(\mbox{linear})} = \left (1.6 \times 10 ^{2} \frac{s}{m^2} \right ) D v</math> | 
|  |  |  |  | 
| − | :<math>\sum \vec {F}_{ext} = -bv = m \frac{dv}{dt}</math>
 | + | Thus in order for the above ratio to be near unity,<math> Dv < 10^{-3} \Rightarrow</math> D is very small like a raindrop and has a small velocity < 1 m/s. | 
| − | : <math>\Rightarrow  \int_{v_i}^{v_f} \frac{dv}{v} = \int_{t_i}^{t_f} \frac{-b}{m}dt</math>
 |  | 
| − | :<math>\ln\frac{v_f}{v_i} = \frac{-b}{m}t</math>; <math>t_i \equiv 0</math>
 |  | 
| − | : <math>v_f = v_i e^{-\frac{b}{m}t}</math>
 |  | 
|  |  |  |  | 
| − | The displacement is given by
 | + | ==Linear Air Resistance== | 
| − |   |  | 
| − | :<math>x =\int_0^t v_i e^{-\frac{b}{m}t} dt</math>
 |  | 
| − | :: <math>= \left . v_i \left ( \frac {e^{-\frac{b}{m}t}}{-\frac{b}{m}} \right ) \right |_0^t</math>
 |  | 
| − | :: <math>= \left . v_i \left ( -\frac{m}{b} e^{-\frac{b}{m}t} \right ) \right |_0^t</math>
 |  | 
| − | :: <math>= \left . v_i \left ( \frac{m}{b} e^{-\frac{b}{m}t} \right ) \right |_t^0</math>
 |  | 
| − | :: <math>=  v_i \left ( \frac{m}{b} e^{-\frac{b}{m}0} -\frac{m}{b} e^{-\frac{b}{m}t} \right ) </math>
 |  | 
| − | :: <math>=  \frac{m}{b} v_i \left ( 1-e^{-\frac{b}{m}t} \right )</math>
 |  | 
| − |   |  | 
| − | ==Example: falling object with linear air friction==
 |  | 
| − | Consider a ball falling under the influence of gravity and a frictional force that is proportion to its velocity 
 |  | 
| − |   |  | 
| − | :<math>\sum \vec{F}_{ext} = mg -bv = m \frac{dv}{dt}</math>
 |  | 
| − |   |  | 
| − | let
 |  | 
| − | :<math>v_t = \frac{mg}{b}</math>
 |  | 
| − | :<math> v_t -v = \frac{1}{b} \frac{dv}{dt}</math>
 |  | 
| − | :<math>  b dt= \frac{dv}{v_t -v} </math>
 |  | 
| − | :<math>  -b dt= \frac{dv}{v -v_t} </math>
 |  | 
| − | :<math>  -\int_0^t b dt= \int_{v_0}^v \frac{dv}{v -v_t} </math>
 |  | 
| − | :<math>  -bt = \ln{\left( v -v_t \right)} - \ln{\left ( v_0-v_t \right )}</math>
 |  | 
| − |   |  | 
| − | ==Example: falling object with quadratic  air friction==
 |  | 
| − |   |  | 
| − | Consider a ball falling under the influence of gravity and a frictional force that is proportion to its velocity squared
 |  | 
| − |   |  | 
| − | :<math>\sum \vec{F}_{ext} = mg -bv^2 = m \frac{dv}{dt}</math>
 |  | 
| − |   |  | 
| − | Find the fall distance
 |  | 
| − |   |  | 
| − | Here is a trick to convert the integral over time to one over distance so you don't need to integrate twice as inthe previous example
 |  | 
| − |   |  | 
| − | :<math>\frac{dv}{dt} = \frac{dv}{dy}\frac{dy}{dt} = v\frac{dv}{dy}</math>
 |  | 
| − |   |  | 
| − | The integral becomes
 |  | 
| − |   |  | 
| − | :<math>mg -bv^2 = m v\frac{dv}{dy}</math>
 |  | 
| − | :<math>\int_{y_i}^{y_f} dy  = \int_{v_i}^{v_f} m \frac{dv}{\left ( mg -bv^2 \right ) }</math>
 |  | 
| − | :<math>y  = \int_{v_i}^{v_f} \frac{dv}{\left ( g -\frac{b}{m}v^2 \right ) }</math>
 |  | 
|  |  |  |  | 
|  | + | [[Forest_UCM_PnCP_LinAirRes]] | 
|  |  |  |  | 
| − | let <math>u =g -\frac{b}{m}v^2</math>  
 | + | ==quadratic friction== | 
|  |  |  |  | 
| − | then <math>du = -2\frac{b}{m}v dv</math>
 |  | 
|  |  |  |  | 
| − | :<math>y  =\int_{v_i}^{v_f} \frac{-m}{2b} \frac{du}{u } = \frac{b}{m} \int_{v_f}^{v_i} \ln {g -\frac{b}{m}v^2} =</math>
 | + | [[Forest_UCM_PnCP_QuadAirRes]] | 
| − | :<math>y  =\frac{m}{2b}  \ln \left ( \frac {g -\frac{b}{m}v_i^2}{g -\frac{b}{m}v_f^2} \right ) </math>
 |  | 
|  |  |  |  | 
|  | ==Another block on incline example== |  | ==Another block on incline example== | 
| Line 87: | Line 47: | 
|  | [[Forest_UCM_NLM_BlockOnIncline]] |  | [[Forest_UCM_NLM_BlockOnIncline]] | 
|  |  |  |  | 
| − | =Charged Particle in uniform B-Field= | + | =Projecile Motion= | 
| − |   |  | 
| − | Consider a charged particle moving the x-y plane in the presence of a uniform magnetic field with field lines in the z-dierection.
 |  | 
|  |  |  |  | 
| − | :<math>\vec{v} = v_x \hat i + v_y \hat j</math>
 | + | [[Forest_UCM_PnCP_ProjMotion]] | 
| − | :<math>\vec{B} = B \hat k</math>
 |  | 
|  |  |  |  | 
|  | + | =Charged Particle in uniform B-Field= | 
|  |  |  |  | 
| − | ;Lorentz Force
 | + | [[Forest_UCM_PnCP_QubUniBfield]] | 
| − |   |  | 
| − | :<math>\vec{F} = q \vec{E} + q\vec{v} \times \vec{B}</math>
 |  | 
| − |   |  | 
| − | ;Note: the work done by a magnetic field is zero if the particle's kinetic energy (mass and velocity) don't change.
 |  | 
| − | :<math>W = \Delta K.E.</math>
 |  | 
| − |   |  | 
| − | No work is done on a charged particle forced to move in a fixed circular orbit by a magnetic field (cyclotron)
 |  | 
| − |   |  | 
| − |   |  | 
| − | :<math>\vec{F} = m \vec{a} = q \vec{v} \times \vec{B} =  q\left ( \begin{matrix} \hat i  & \hat j & \hat k \\ v_x   & v_y &0 \\ 0 &0 & B  \end{matrix} \right )</math> 
 |  | 
| − | :<math>\vec{F} = q \left (v_y B \hat i - v_x B \hat j \right )</math>
 |  | 
| − |   |  | 
| − | ==Apply Newton's 2nd Law==
 |  | 
| − |   |  | 
| − | :<math>ma_x = qv_yB</math>
 |  | 
| − | :<math>ma_y = -qv_x B</math>
 |  | 
| − | :<math>ma_z = 0</math>
 |  | 
| − |   |  | 
| − |   |  | 
| − | ;Motion in the z-direction has no acceleration and therefor constant (zero) velocity.
 |  | 
| − |   |  | 
| − | ;Motion in the x-y plane is circular
 |  | 
| − |   |  | 
| − | Let
 |  | 
| − | :<math>\omega=\frac{qB}{m}</math> = fundamental cyclotron frequency
 |  | 
| − |   |  | 
| − | Then we have two coupled equations
 |  | 
| − |   |  | 
| − | :<math>\dot{v}_x = \omega v_y</math>
 |  | 
| − | :<math>\dot{v}_y = - \omega v_x</math>
 |  | 
| − |   |  | 
| − | ==determine the velocity as a function of time==
 |  | 
| − | let 
 |  | 
| − |   |  | 
| − | :<math>v^* = v_x + i v_y</math> = complex variable used to change variables
 |  | 
| − |   |  | 
| − | :<math>\dot{v}^* = \dot{v}_x + i \dot{v}_y</math>
 |  | 
| − | :: <math>= \omega v_y + i (-\omega v_x)</math>
 |  | 
| − | :: <math>= -i \omega \left ( \omega v_x +i\omega v_y \right )</math>
 |  | 
| − | :: <math>= -i \omega v^*</math>
 |  | 
| − | :<math>\Rightarrow</math>
 |  | 
| − | ::<math>v^* = Ae^{-i\omega t}</math>
 |  | 
| − |   |  | 
| − | the complex variable solution may be written in terms of <math>\sin</math> and <math>\cos</math>
 |  | 
| − |   |  | 
| − | :<math>v_x +i v_y = A \left ( \cos(\omega t) - i \sin ( \omega t) \right )</math>
 |  | 
| − |   |  | 
| − | The above expression indicates that <math>v_x</math> and <math>v_y</math> oscillate at the same frequency but are 90 degrees out of phase.  This is characteristic of circular motion with a magnitude of <math>v_{\perp}</math> such that 
 |  | 
| − |   |  | 
| − | :<math>v^* = v_{\perp}e^{-i\omega t}</math>
 |  | 
| − |   |  | 
| − | ==Determine the position as a function of time==
 |  | 
| − |   |  | 
| − | To determine the position as a function of time we need to integrate the solution above for the velocity as a function of time
 |  | 
| − |   |  | 
| − | :<math>v^* = v_{\perp}e^{-i\omega t}</math>
 |  | 
| − |   |  | 
| − | Using the same trick used to determine the velocity, define a position function using complex variable such that
 |  | 
| − |   |  | 
| − | :<math>x^* = x + i y</math>
 |  | 
| − |   |  | 
| − | Using the definitions of velocity 
 |  | 
| − |   |  | 
| − | : <math>x^* = \int v^* dt = \int v_{\perp}e^{-i\omega t} dt</math>
 |  | 
| − | :: <math>= \frac{v_{\perp}}{i \omega} e^{-i\omega t} </math>
 |  | 
| − |   |  | 
| − | The position is also composed of two oscillating components that are out of phase by 90 degrees
 |  | 
| − |   |  | 
| − | :<math>x^* = x + i y= \frac{v_{\perp}}{i \omega} e^{-i\omega t} = -i\frac{v_{perp}}{\omega} \left ( \cos(\omega t) - \sin(\omega t) \right )</math>
 |  | 
| − |   |  | 
| − | The radius of the circular orbit is given by 
 |  | 
| − |   |  | 
| − | :<math>r = \left | x^* \right | = \frac{v_{perp}}{\omega} = \frac{mv_{perp}}{qB}</math> 
 |  | 
| − | :<math>r = \frac{p}{qB}</math> 
 |  | 
| − | ::<math>p=qBr</math> 
 |  | 
| − |   |  | 
| − | The momentum is proportional to the charge, magnetic field, and radius
 |  | 
| − |   |  | 
| − |   |  | 
| − | http://hep.physics.wayne.edu/~harr/courses/5200/f07/lecture10.htm
 |  | 
| − |   |  | 
|  |  |  |  | 
| − | http://www.physics.sfsu.edu/~lea/courses/grad/motion.PDF
 |  | 
|  |  |  |  | 
| − | http://physics.ucsd.edu/students/courses/summer2009/session1/physics2b/CH29.pdf
 |  | 
|  |  |  |  | 
| − | http://cnx.org/contents/77faa148-866e-4e96-8d6e-1858487a520f@9
 |  | 
|  |  |  |  | 
|  | [[Forest_Ugrad_ClassicalMechanics]] |  | [[Forest_Ugrad_ClassicalMechanics]] |