Difference between revisions of "Forest UCM NLM BlockOnIncline"
Jump to navigation
Jump to search
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
=the problem= | =the problem= | ||
− | Consider a block of mass m sliding down the inclined plane shown below with a frictional force that is given by | + | Consider a block of mass <math>m</math> is sliding down the inclined plane shown below with a frictional force that is given by |
:<math>F_f = kmv^2</math> | :<math>F_f = kmv^2</math> | ||
+ | |||
+ | How long does it take to fall a distance <math>x</math>? | ||
[[File:TF_UCM_InclinedPlaneWfriction.png | 200 px]] | [[File:TF_UCM_InclinedPlaneWfriction.png | 200 px]] | ||
− | |||
− | |||
=Step 1: Identify the system= | =Step 1: Identify the system= | ||
Line 38: | Line 38: | ||
:<math> \Rightarrow v_t^2 = \frac{g \sin \theta}{k}</math> | :<math> \Rightarrow v_t^2 = \frac{g \sin \theta}{k}</math> | ||
− | Insert the terminal | + | ;This means that the block does not stop sliding but instead it reaches a minimal (terminal) velocity. |
+ | |||
+ | Insert the terminal velocity constant into Newton's second law | ||
:<math>\sum F_{ext} = mk \left ( v_t^2 - v^2 \right) = ma_x = m \frac{dv_x}{dt}</math> | :<math>\sum F_{ext} = mk \left ( v_t^2 - v^2 \right) = ma_x = m \frac{dv_x}{dt}</math> | ||
− | : <math>\ | + | : <math>\int dt = \int \frac{dv}{k \left ( v_t^2 - v^2 \right)}</math> |
+ | |||
+ | before we had <math>(v dv)</math> in the numerator and could do a <math>u du</math> substitution, but not this time, use an integral table. | ||
Integral table <math>\Rightarrow</math> | Integral table <math>\Rightarrow</math> | ||
Line 69: | Line 73: | ||
substituting | substituting | ||
− | :<math>\ | + | :<math>\int dt = \int \frac{dv}{k \left ( v_t^2 - v^2 \right)}</math> |
:<math>t = \frac{-i}{kv_t} \tan^{-1} \left ( \frac{iv}{v_t}\right ) = \frac{1}{kv_t} \tanh^{-1} \left ( \frac{v}{v_t} \right ) </math> | :<math>t = \frac{-i}{kv_t} \tan^{-1} \left ( \frac{iv}{v_t}\right ) = \frac{1}{kv_t} \tanh^{-1} \left ( \frac{v}{v_t} \right ) </math> | ||
Line 78: | Line 82: | ||
:<math>\int dx = v_t \int \tanh \left ( k v_t t \right ) dt</math> | :<math>\int dx = v_t \int \tanh \left ( k v_t t \right ) dt</math> | ||
+ | |||
+ | |||
+ | Integral table <math>\Rightarrow</math> | ||
+ | |||
+ | ::<math>\int \tanh (x) dx = \ln \left ( \cosh (x) \right )</math> | ||
+ | |||
+ | |||
+ | :<math>x = \frac{1}{k} \ln \left ( \cosh (k v_t t) \right )</math> | ||
+ | |||
+ | solving for the fall time | ||
+ | |||
+ | :<math>t = \frac{\cosh^{-1} \left ( e^{kx} \right)}{kv_t}= \frac{\cosh^{-1} \left ( e^{kx} \right)}{\sqrt{kg \sin \theta}}</math> | ||
[[Forest_UCM_NLM#Block_on_incline_with_friction]] | [[Forest_UCM_NLM#Block_on_incline_with_friction]] |
Latest revision as of 17:48, 8 September 2014
the problem
Consider a block of mass
is sliding down the inclined plane shown below with a frictional force that is given by
How long does it take to fall a distance ?
Step 1: Identify the system
- The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.
Step 2: Choose a suitable coordinate system
- A coordinate system with one axis along the direction of motion may make solving the problem easier
Step 3: Draw the Free Body Diagram
Step 4: Define the Force vectors using the above coordinate system
Step 5: Used Newton's second law
Motion in the
direction described by Newton's second law is:- Notice a terminal velocity exists when
- This means that the block does not stop sliding but instead it reaches a minimal (terminal) velocity.
Insert the terminal velocity constant into Newton's second law
before we had in the numerator and could do a substitution, but not this time, use an integral table.
Integral table
Identities
substituting
Solving for
Integral table
solving for the fall time